4409  | 0.963 | Cesario E.; Lindia P.; Vinci A. | A Scalable Multi-Density Clustering Approach To Detect City Hotspots In A Smart City | Future Generation Computer Systems, 157 (2024) |
20475  | 0.943 | Cesario E.; Uchubilo P.I.; Vinci A.; Zhu X. | Discovering Multi-Density Urban Hotspots In A Smart City | Proceedings - 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020 (2020) |
19205  | 0.937 | Cesario E.; Lindia P.; Vinci A. | Detecting Multi-Density Urban Hotspots In A Smart City: Approaches, Challenges And Applications | Big Data and Cognitive Computing, 7, 1 (2023) |
29524  | 0.931 | Cesario E.; Lindia P.; Vinci A. | How To Deal With Different Densities Of Urban Spatial Data? A Comparison Of Clustering Approaches To Detect City Hotspots | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 14478 LNCS (2025) |
38191  | 0.925 | Cesario E.; Uchubilo P.I.; Vinci A.; Zhu X. | Multi-Density Urban Hotspots Detection In Smart Cities: A Data-Driven Approach And Experiments | Pervasive and Mobile Computing, 86 (2022) |
1239  | 0.861 | Yan Y.; Quan W.; Wang H. | A Data-Driven Adaptive Geospatial Hotspot Detection Approach In Smart Cities | Transactions in GIS, 28, 2 (2024) |
14529  | 0.85 | Bellavista P.; Campestri M.; Foschini L.; Montanari R. | Clustering Of Spatial Data With Dbscan: An Assessment Of Stark | Proceedings - IEEE Symposium on Computers and Communications, 2019-June (2019) |