19205  | 0.982 | Cesario E.; Lindia P.; Vinci A. | Detecting Multi-Density Urban Hotspots In A Smart City: Approaches, Challenges And Applications | Big Data and Cognitive Computing, 7, 1 (2023) |
4409  | 0.958 | Cesario E.; Lindia P.; Vinci A. | A Scalable Multi-Density Clustering Approach To Detect City Hotspots In A Smart City | Future Generation Computer Systems, 157 (2024) |
38191  | 0.956 | Cesario E.; Uchubilo P.I.; Vinci A.; Zhu X. | Multi-Density Urban Hotspots Detection In Smart Cities: A Data-Driven Approach And Experiments | Pervasive and Mobile Computing, 86 (2022) |
29524  | 0.947 | Cesario E.; Lindia P.; Vinci A. | How To Deal With Different Densities Of Urban Spatial Data? A Comparison Of Clustering Approaches To Detect City Hotspots | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 14478 LNCS (2025) |
58249  | 0.943 | Cesario E.; Vinci A.; Zarin S. | Towards Parallel Multi-Density Clustering For Urban Hotspots Detection | Proceedings - 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021 (2021) |
1239  | 0.881 | Yan Y.; Quan W.; Wang H. | A Data-Driven Adaptive Geospatial Hotspot Detection Approach In Smart Cities | Transactions in GIS, 28, 2 (2024) |
17784  | 0.857 | Gozet M.; Karakose M.; Yilmaz A.E. | Deep Embedded Clustering Using Crowd Density Map | IET Conference Proceedings, 2024, 37 (2024) |
14529  | 0.856 | Bellavista P.; Campestri M.; Foschini L.; Montanari R. | Clustering Of Spatial Data With Dbscan: An Assessment Of Stark | Proceedings - IEEE Symposium on Computers and Communications, 2019-June (2019) |
14527  | 0.852 | Kenger O.N.; Kenger Z.D.; Ozceylan E.; Mrugalska B. | Clustering Of Cities Based On Their Smart Performances: A Comparative Approach Of Fuzzy C-Means, K-Means, And K-Medoids | IEEE Access, 11 (2023) |