Smart City Gnosys

Smart city article details

Title Stafgcn: A Spatial-Temporal Attention-Based Fusion Graph Convolution Network For Pedestrian Trajectory Prediction
ID_Doc 52875
Authors Liu G.; Pan C.; Zhang X.; Leng Q.
Year 2025
Published Bulletin of the Polish Academy of Sciences: Technical Sciences, 73, 1
DOI http://dx.doi.org/10.24425/bpasts.2024.151960
Abstract Pedestrian trajectory prediction provides crucial data support for the development of smart cities. Existing pedestrian trajectory prediction methods often overlook the different types of pedestrian interactions and the micro-level spatial-temporal relationships when handling the interaction information in spatial and temporal dimensions. The model employs a spatial-temporal attention-based fusion graph convolutional framework to predict future pedestrian trajectories. For the different types of local and global relationships between pedestrians, it first employs spatial-temporal attention mechanisms to capture dependencies in pedestrian sequence data, obtaining the social interactions of pedestrians in spatial contexts and the movement trends of pedestrians over time. Subsequently, a fusion graph convolutional module merges the temporal weight matrix and the spatial weight matrix into a spatial-temporal fusion feature map. Finally, a decoder section utilizes time-stacked convolutional neural networks to predict future trajectories. The final validation on the ETH and UCY datasets yielded experimental results with an average displacement error (ADE) of 0.34 and an final displacement error (FDE) of 0.55. The visualization results further demonstrated the rationality of the model. © 2025 The Author(s).
Author Keywords fusion graph convolution; micro-level spatial-temporal relationship; pedestrian trajectory prediction; spatial-temporal attention; time-stacked convolutional neural network


Similar Articles


Id Similarity Authors Title Published
41042 View0.897Lin X.; Zhang Y.; Wang S.; Hu Y.; Yin B.Ost-Hgcn: Optimized Spatial-Temporal Hypergraph Convolution Network For Trajectory PredictionIEEE Transactions on Intelligent Transportation Systems, 26, 3 (2025)
38363 View0.896Peng W.; Cui Z.; Duan Y.; Tao X.Multi-Relational Pedestrian Trajectory Prediction In Complex ScenesIEEE Vehicular Technology Conference, 2022-September (2022)
38047 View0.876Yang S.; Wu Q.; Wang Y.; Zhou Z.Mstdfgrn: A Multi-View Spatio-Temporal Dynamic Fusion Graph Recurrent Network For Traffic Flow PredictionComputers and Electrical Engineering, 123 (2025)
53044 View0.873Meng X.; Xie W.; Cui J.Stmgfn: Spatio-Temporal Multi-Graph Fusion Network For Traffic Flow PredictionLecture Notes in Computer Science, 15291 LNCS (2025)
23645 View0.873Han X.; Li S.; Yu H.; Deng T.; Xu H.Enhanced Multimodal Prediction Via Feature Fusion And Momentum BufferingExpert Systems with Applications, 290 (2025)
56197 View0.872Li Y.-M.; Li W.-Z.; Zhang X.-H.; Wang P.; Hu J.The Pedestrian Trajectory Prediction Model Based On Hierarchical Envelope Domain Adaptation; [基于分级包络域适应的行人轨迹预测模型]Tien Tzu Hsueh Pao/Acta Electronica Sinica, 53, 4 (2025)
52517 View0.868Huang X.; Pan Z.; Zhao G.Spatial-Temporal Interactive Graph Convolutional Networks For Traffic Forecasting2024 4th International Conference on Electronic Information Engineering and Computer Technology, EIECT 2024 (2024)
1976 View0.867Qiu Z.; Zhu T.; Jin Y.; Sun L.; Du B.A Graph Attention Fusion Network For Event-Driven Traffic Speed PredictionInformation Sciences, 622 (2023)
52507 View0.864Liu S.; Zhu J.; Lei W.; Zhang P.Spatial-Temporal Attention Graph Wavenet For Traffic Forecasting2023 5th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2023 (2023)
36944 View0.864Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)