Smart City Gnosys

Smart city article details

Title Ost-Hgcn: Optimized Spatial-Temporal Hypergraph Convolution Network For Trajectory Prediction
ID_Doc 41042
Authors Lin X.; Zhang Y.; Wang S.; Hu Y.; Yin B.
Year 2025
Published IEEE Transactions on Intelligent Transportation Systems, 26, 3
DOI http://dx.doi.org/10.1109/TITS.2025.3529666
Abstract Pedestrian trajectory prediction is a key component for various applications that involve human and vehicle interactions, such as autonomous driving, traffic management and smart city planning. Existing methods based on graph neural networks have limited ability to capture group interactions and precisely model complex associations among multi-agents. To solve these problems, we propose OST-HGCN, an optimized hypergraph convolutional network. It models multi-agent trajectory interactions from both temporal and spatial perspectives using hypergraph structures, and optimizes the spatio-temporal hypergraph structure to enable fine-grained analysis of multi-agent trajectory motion intentions and high-order interactions. We employ OST-HGCN to a CVAE-based prediction framework, and use the optimized hypergraph structure to predict multi-agent plausible trajectories. We conduct extensive experiments on four real trajectory prediction datasets of NBA, NFL, SDD and ETH-UCY, and verify the effectiveness of the proposed OST-HGCN. © 2000-2011 IEEE.
Author Keywords hypergraph convolution network; hypergraph structure optimization; multi-agent interaction modeling; Trajectory prediction


Similar Articles


Id Similarity Authors Title Published
52875 View0.897Liu G.; Pan C.; Zhang X.; Leng Q.Stafgcn: A Spatial-Temporal Attention-Based Fusion Graph Convolution Network For Pedestrian Trajectory PredictionBulletin of the Polish Academy of Sciences: Technical Sciences, 73, 1 (2025)
38363 View0.878Peng W.; Cui Z.; Duan Y.; Tao X.Multi-Relational Pedestrian Trajectory Prediction In Complex ScenesIEEE Vehicular Technology Conference, 2022-September (2022)
23809 View0.861Ouyang X.; Li Y.; Guo D.; Huang W.; Yang X.; Yang Y.; Zhang J.; Li T.Enhancing Few-Sample Spatio-Temporal Prediction Via Relational Fusion-Based Hypergraph Neural NetworkInformation Fusion, 121 (2025)
21283 View0.86Li F.; Feng J.; Yan H.; Jin G.; Yang F.; Sun F.; Jin D.; Li Y.Dynamic Graph Convolutional Recurrent Network For Traffic Prediction: Benchmark And SolutionACM Transactions on Knowledge Discovery from Data, 17, 1 (2023)
21123 View0.86Hu J.; Lin X.; Wang C.Dstgcn: Dynamic Spatial-Temporal Graph Convolutional Network For Traffic PredictionIEEE Sensors Journal, 22, 13 (2022)
47541 View0.858Wen S.; Wang H.; Liu D.; Zhangli Q.; Metaxas D.Second-Order Graph Odes For Multi-Agent Trajectory ForecastingProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 (2024)
56197 View0.854Li Y.-M.; Li W.-Z.; Zhang X.-H.; Wang P.; Hu J.The Pedestrian Trajectory Prediction Model Based On Hierarchical Envelope Domain Adaptation; [基于分级包络域适应的行人轨迹预测模型]Tien Tzu Hsueh Pao/Acta Electronica Sinica, 53, 4 (2025)
38024 View0.852Yao H.; Chen R.; Xie Z.; Yang J.; Hu M.; Guo J.Mra-Dgcn: Multi-Range Attention-Based Dynamic Graph Convolutional Network For Traffic PredictionProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022 (2022)