Smart City Gnosys

Smart city article details

Title Short Term Power Load Forecasting Using Machine Learning Models For Energy Management In A Smart Community
ID_Doc 48668
Authors Aurangzeb K.
Year 2019
Published 2019 International Conference on Computer and Information Sciences, ICCIS 2019
DOI http://dx.doi.org/10.1109/ICCISci.2019.8716475
Abstract The short-term power load prediction of single households is a challenging issue in the research fields of Smart Grid (SG) management/planning, viable energy usage, energy saving and the bidding system design of electricity market. The reason for this is the unpredictability and uncertainty in electricity consumption pattern of individual household. The energy management/planning of the SGs is even becoming more complex due to the integration of Distributed Energy Resources (DERs). The DERs are useful in decreasing the bill of the electricity consumer by empowering them to produce their own green energy. With the huge development in Advanced Metering Infrastructure (AMI), Big Data (BD) and machine learning models, the potential benefits of dynamic pricing schemes and DERs can be fully accomplished. But, the accurate prediction of power generated through DERs as well as forecasting the user power profile is a big issue. The user power profile varies hourly, daily, weekly and seasonally due to the various environmental and seasonal effects. In this work, the focus is on exploring and evaluating machine learning models for accurately predicting user power profile for energy management in a smart community. Eight regression models are evaluated for the prediction of the power consumption of the single household. The simulation results indicate that the Radial Basis Function (RBF) kernel is the most suitable machine learning model for forecasting the short term power consumption of the single household. © 2019 IEEE.
Author Keywords Artificial neural network; Machine learning; Residential smart home; User power profile: renewable energy


Similar Articles


Id Similarity Authors Title Published
31214 View0.903Aurangzeb K.; Haider S.I.; Alhussein M.Individual Household Load Forecasting Using Bi-Directional Lstm Network With Time-Based EmbeddingEnergy Reports, 11 (2024)
45985 View0.899Alomoush W.; Khan T.A.; Nadeem M.; Janjua J.I.; Saeed A.; Athar A.Residential Power Load Prediction In Smart Cities Using Machine Learning Approaches2022 International Conference on Business Analytics for Technology and Security, ICBATS 2022 (2022)
26858 View0.888Dong C.; Du L.; Ji F.; Song Z.; Zheng Y.; Howard A.; Intrevado P.; Woodbridge D.Forecasting Smart Meter Energy Usage Using Distributed Systems And Machine LearningProceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018 (2019)
42128 View0.887Almoussawi Z.A.; Kurdi W.H.M.; Khaleel B.M.; Al-Attabi K.; Sabah H.A.; Alazzai W.K.Planet Optimization With Machine Learning Enabled Power Usage Forecasting Modeling In Smart Grid Environment6th Iraqi International Conference on Engineering Technology and its Applications, IICETA 2023 (2023)
23972 View0.884Janjua J.I.; Ahmad R.; Abbas S.; Mohammed A.S.; Khan M.S.; Daud A.; Abbas T.; Khan M.A.Enhancing Smart Grid Electricity Prediction With The Fusion Of Intelligent Modeling And Xai IntegrationInternational Journal of Advanced and Applied Sciences, 11, 5 (2024)
3739 View0.883Noaman S.A.; Ahmed A.M.S.; Salman A.D.A Prediction Model Of Power Consumption In Smart City Using Hybrid Deep Learning AlgorithmInternational Journal on Informatics Visualization, 7, 4 (2023)
35996 View0.883Haque A.; Malik A.Machine Learning In Renewable Energy Systems For Smart CitiesSmart Cities: Power Electronics, Renewable Energy, and Internet of Things (2024)
48664 View0.882Shaikh A.K.; Nazir A.; Khan I.; Shah A.S.Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis For Interpretable Time SeriesScientific Reports, 12, 1 (2022)
17543 View0.882Aurangzeb K.Dbscan-Based Energy Users Clustering For Performance Enhancement Of Deep Learning ModelJournal of Intelligent and Fuzzy Systems, 46, 3 (2024)
36056 View0.879Tiwari S.; Jain A.; Ahmed N.M.O.S.; Charu; Alkwai L.M.; Dafhalla A.K.Y.; Hamad S.A.S.Machine Learning-Based Model For Prediction Of Power Consumption In Smart Grid- Smart Way Towards Smart CityExpert Systems, 39, 5 (2022)