Smart City Gnosys

Smart city article details

Title Individual Household Load Forecasting Using Bi-Directional Lstm Network With Time-Based Embedding
ID_Doc 31214
Authors Aurangzeb K.; Haider S.I.; Alhussein M.
Year 2024
Published Energy Reports, 11
DOI http://dx.doi.org/10.1016/j.egyr.2024.03.028
Abstract Accurate individual household load forecasting is essential for effectively managing energy demand and promoting efficient energy consumption. This study evaluates the performance of various deep learning models for individual household load forecasting, specifically using the Smart Grid Smart City (SGSC) dataset. Feature engineering is conducted, producing two distinct sets of features, and the models’ accuracy in predicting individual household loads is assessed using both basic and derived feature sets. The results demonstrate that the T2VBiLSTM model outperforms other models, achieving an average mean absolute percentage error (MAPE) of 74.90% and a root mean square error (RMSE) of 0.433 kW. The incorporation of a wider range of features, including maximum load, minimum load, and load range over time, is emphasized to enhance forecasting accuracy. These features capture long-term load behavior, enabling the models to comprehend complex energy consumption patterns and generate more accurate and reliable predictions. Moreover, limitations in using MAPE as a loss function for load forecasting at the individual customer level are revealed, due to its sensitivity to scale, asymmetry, outliers, and uniform weighting assumption. Alternative loss functions like mean absolute error (MAE) are recommended, as they treat all errors equally and better capture data peaks. While this study focuses on the SGSC dataset, the findings have broader implications for efficiently managing energy demand and promoting energy consumption on a larger scale. © 2024 The Authors
Author Keywords Deep learning; Feature engineering; Load forecasting; Smart grids


Similar Articles


Id Similarity Authors Title Published
48668 View0.903Aurangzeb K.Short Term Power Load Forecasting Using Machine Learning Models For Energy Management In A Smart Community2019 International Conference on Computer and Information Sciences, ICCIS 2019 (2019)
23183 View0.899Binbusayyis A.; Sha M.Energy Consumption Prediction Using Modified Deep Cnn-Bi Lstm With Attention MechanismHeliyon, 11, 1 (2025)
3739 View0.896Noaman S.A.; Ahmed A.M.S.; Salman A.D.A Prediction Model Of Power Consumption In Smart City Using Hybrid Deep Learning AlgorithmInternational Journal on Informatics Visualization, 7, 4 (2023)
8459 View0.893Alghamdi H.; Hafeez G.; Ali S.; Ullah S.; Khan M.I.; Murawwat S.; Hua L.-G.An Integrated Model Of Deep Learning And Heuristic Algorithm For Load Forecasting In Smart GridMathematics, 11, 21 (2023)
59407 View0.888Zaman M.; Saha S.; Zohrabi N.; Abdelwahed S.Uncertainty Estimation In Power Consumption Of A Smart Home Using Bayesian Lstm Networks2022 IEEE International Symposium on Advanced Control of Industrial Processes, AdCONIP 2022 (2022)
17543 View0.888Aurangzeb K.Dbscan-Based Energy Users Clustering For Performance Enhancement Of Deep Learning ModelJournal of Intelligent and Fuzzy Systems, 46, 3 (2024)
6009 View0.886Haring T.; Ahmadiahangar R.; Rosin A.; Korotko T.; Biechl H.Accuracy Analysis Of Selected Time Series And Machine Learning Methods For Smart Cities Based On Estonian Electricity Consumption ForecastProceedings - 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2020 (2020)
45985 View0.883Alomoush W.; Khan T.A.; Nadeem M.; Janjua J.I.; Saeed A.; Athar A.Residential Power Load Prediction In Smart Cities Using Machine Learning Approaches2022 International Conference on Business Analytics for Technology and Security, ICBATS 2022 (2022)
7417 View0.882Sunder R.; R S.; Paul V.; Punia S.K.; Konduri B.; Nabilal K.V.; Lilhore U.K.; Lohani T.K.; Ghith E.; Tlija M.An Advanced Hybrid Deep Learning Model For Accurate Energy Load Prediction In Smart BuildingEnergy Exploration and Exploitation, 42, 6 (2024)
38700 View0.882Amalou I.; Mouhni N.; Abdali A.Multivariate Time Series Prediction By Rnn Architectures For Energy Consumption ForecastingEnergy Reports, 8 (2022)