Smart City Gnosys

Smart city article details

Title Pca And Pso Based Optimized Support Vector Machine For Efficient Intrusion Detection In Internet Of Things
ID_Doc 41497
Authors Raghunath M.P.; Deshmukh S.; Chaudhari P.; Bangare S.L.; Kasat K.; Awasthy M.; Omarov B.; Waghulde R.R.
Year 2025
Published Measurement: Sensors, 37
DOI http://dx.doi.org/10.1016/j.measen.2024.101806
Abstract The Internet of Things (IoT) is a network that interconnects many everyday objects, including computers, televisions, washing machines, and even whole urban areas. These devices has the capability to collect and disseminate information because to their integration of electronics, software, sensors, and connectivity to a network. The Internet of Things enables the remote sensing, identification, and control of physical things via the utilisation of existing network infrastructure. By using this function, it becomes feasible to integrate elements of the physical world into computerised systems, resulting in enhanced levels of efficiency, precision, and financial profitability. The Internet of Things (IoT) encompasses a diverse array of applications. The Internet of Things (IoT) may be used in several sectors such as healthcare, smart cities, smart homes, transportation, logistics, agriculture, and smart traffic management. The quantity of Internet of Things (IoT) devices is increasing rapidly and exponentially. The surge in numbers is accompanied by a significant escalation in security vulnerabilities. This article presents the development of an intrusion detection system for the Internet of Things using machine learning and feature selection techniques. The system aims to accurately categorise and forecast attacks on IoT devices. This approach utilises the publicly accessible NSL KDD dataset as its input dataset. During the data collecting process for NSL-KDD, all symbolic qualities are transformed into their corresponding numerical representations. Conversely, all numerical features are translated back into symbolic form at the conclusion of the procedure. Principal component analysis is employed to achieve the objective of attribute extraction. After completing the preparation step, the data set is classified using several machine learning techniques such as support vector machine, linear regression, and random forest. Evaluating the veracity, exactness, and retrieval rate of different machine learning algorithms is crucial for choosing the most effective ones. The accuracy of the Intrusion Detection System (IDS) based on Particle Swarm Optimisation (PSO) is 98.5 percent. The PSO-based SVM method is shown superior performance compared to random forest and linear regression methods in terms of precision, recall, and specificity. © 2025 The Authors
Author Keywords Internet of things; Particle swarm optimisation; Principal component analysis; Security; Support vector machine; Vulnerability


Similar Articles


Id Similarity Authors Title Published
33346 View0.897Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
7859 View0.891Thomas L.; Anoop B.K.An Efficient Iot Based Intrusion Detection System Using Optimization Kernel Extreme Learning MachineInternational Journal of Computer Network and Information Security, 17, 2 (2025)
37199 View0.89Al-Ambusaidi M.; Yinjun Z.; Muhammad Y.; Yahya A.Ml-Ids: An Efficient Ml-Enabled Intrusion Detection System For Securing Iot Networks And ApplicationsSoft Computing, 28, 2 (2024)
36064 View0.886Alfahaid A.; Alalwany E.; Almars A.M.; Alharbi F.; Atlam E.; Mahgoub I.Machine Learning-Based Security Solutions For Iot Networks: A Comprehensive SurveySensors, 25, 11 (2025)
33032 View0.886Dawoud A.; Sianaki O.A.; Shahristani S.; Raun C.Internet Of Things Intrusion Detection: A Deep Learning Approach2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 (2020)
32898 View0.885Kaur B.; Dadkhah S.; Shoeleh F.; Neto E.C.P.; Xiong P.; Iqbal S.; Lamontagne P.; Ray S.; Ghorbani A.A.Internet Of Things (Iot) Security Dataset Evolution: Challenges And Future DirectionsInternet of Things (Netherlands), 22 (2023)
19430 View0.884Alhanaya M.; Al-Shqeerat K.Developing An Integrated Framework For Securing Internet Of Things Traffic In Smart Cities Using Machine Learning TechniquesApplied Sciences (Switzerland), 13, 16 (2023)
2508 View0.883Mishra D.; Moudgi S.; Virmani D.; Faniband Y.P.; Nandyal A.B.; Sahu P.K.; Singh G.A Mathematical Framework For Enhancing Iot Security In Vanets: Optimizing Intrusion Detection Systems Through Machine Learning AlgorithmsCommunications on Applied Nonlinear Analysis, 31, 8s (2024)
5365 View0.883Natarajan B.; Bose S.; Maheswaran N.; Logeswari G.; Anitha T.A Survey: An Effective Utilization Of Machine Learning Algorithms In Iot Based Intrusion Detection System12th IEEE International Conference on Advanced Computing, ICoAC 2023 (2023)
32899 View0.883Sarker I.H.; Khan A.I.; Abushark Y.B.; Alsolami F.Internet Of Things (Iot) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions And Research DirectionsMobile Networks and Applications, 28, 1 (2023)