Smart City Gnosys

Smart city article details

Title Machine Learning-Based Security Solutions For Iot Networks: A Comprehensive Survey
ID_Doc 36064
Authors Alfahaid A.; Alalwany E.; Almars A.M.; Alharbi F.; Atlam E.; Mahgoub I.
Year 2025
Published Sensors, 25, 11
DOI http://dx.doi.org/10.3390/s25113341
Abstract The Internet of Things (IoT) is revolutionizing industries by enabling seamless interconnectivity across domains such as healthcare, smart cities, the Industrial Internet of Things (IIoT), and the Internet of Vehicles (IoV). However, IoT security remains a significant challenge due to vulnerabilities related to data breaches, privacy concerns, cyber threats, and trust management issues. Addressing these risks requires advanced security mechanisms, with machine learning (ML) emerging as a powerful tool for anomaly detection, intrusion detection, and threat mitigation. This survey provides a comprehensive review of ML-driven IoT security solutions from 2020 to 2024, examining the effectiveness of supervised, unsupervised, and reinforcement learning approaches, as well as advanced techniques such as deep learning (DL), ensemble learning (EL), federated learning (FL), and transfer learning (TL). A systematic classification of ML techniques is presented based on their IoT security applications, along with a taxonomy of security threats and a critical evaluation of existing solutions in terms of scalability, computational efficiency, and privacy preservation. Additionally, this study identifies key limitations of current ML approaches, including high computational costs, adversarial vulnerabilities, and interpretability challenges, while outlining future research opportunities such as privacy-preserving ML, explainable AI, and edge-based security frameworks. By synthesizing insights from recent advancements, this paper provides a structured framework for developing robust, intelligent, and adaptive IoT security solutions. The findings aim to guide researchers and practitioners in designing next-generation cybersecurity models capable of effectively countering emerging threats in IoT ecosystems. © 2025 by the authors.
Author Keywords adversarial attacks; anomaly detection; cybersecurity; deep learning (DL); federated learning (FL); internet of things (IoT); intrusion detection systems (IDSs); IoT security; machine learning (ML); privacy protection


Similar Articles


Id Similarity Authors Title Published
36080 View0.953Ahanger T.A.; Ullah I.; Algamdi S.A.; Tariq U.Machine Learning-Inspired Intrusion Detection System For Iot: Security Issues And Future ChallengesComputers and Electrical Engineering, 123 (2025)
32899 View0.947Sarker I.H.; Khan A.I.; Abushark Y.B.; Alsolami F.Internet Of Things (Iot) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions And Research DirectionsMobile Networks and Applications, 28, 1 (2023)
4273 View0.945Qureshi A.; Qureshi M.A.; Haider H.A.; Khawaja R.A Review On Machine Learning Techniques For Secure Iot NetworksProceedings - 2020 23rd IEEE International Multi-Topic Conference, INMIC 2020 (2020)
1448 View0.945Muniswamy A.; Rathi R.A Detailed Review On Enhancing The Security In Internet Of Things-Based Smart City Environment Using Machine Learning AlgorithmsIEEE Access, 12 (2024)
55462 View0.944Abdulla H.; Al-Raweshidy H.; Awad W.The Era Of Internet Of Things: Towards Better Security Using Machine Learning2023 International Conference on IT Innovation and Knowledge Discovery, ITIKD 2023 (2023)
6593 View0.94Rao G.S.; Yuvaraj S.A.; Kondapi N.R.; Kumari A.R.; Palepu N.R.; Bharathi C.R.; Arulananth T.S.; Ebinezer M.J.D.Advancements In Machine Learning For Iot: Ai-Driven Optimization And SecurityJournal of Information Systems Engineering and Management, 10, 17 (2025)
975 View0.937Khan M.A.A.; Kaidi H.M.A Comprehensive Survey Of Machine Learning Techniques In Next-Generation Wireless Networks And The Internet Of ThingsIngenierie des Systemes d'Information, 28, 4 (2023)
47748 View0.936Ghaffari A.; Jelodari N.; pouralish S.; derakhshanfard N.; Arasteh B.Securing Internet Of Things Using Machine And Deep Learning Methods: A SurveyCluster Computing, 27, 7 (2024)
33346 View0.935Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
6519 View0.935Mishra D.; Naik B.; Bhoi G.Advanced Machine Learning Approach For Designing Intelligent System For Iot Security FrameworkStudies in Computational Intelligence, 1167 (2024)