Smart City Gnosys

Smart city article details

Title Non-Intrusive Movable Energy Harvesting Devices: Materials, Designs, And Their Prospective Uses On Transportation Infrastructures
ID_Doc 39330
Authors Guo L.; Wang H.
Year 2022
Published Renewable and Sustainable Energy Reviews, 160
DOI http://dx.doi.org/10.1016/j.rser.2022.112340
Abstract As low-carbon and smart cities are recently developing fast, non-intrusive and movable energy harvesters can be a trend of energy harvester development to face the severe climate change and to follow the fast pace of urban development and energy needs. To study the feasibility of developing non-intrusive and movable energy harvesters within the limit area available on transportation infrastructures (e.g., roadway, bridge, pipeline), advanced energy materials and the innovative energy harvester designs have been extensively reviewed, identified, and analzyed. For the energy material selection, the review covers the development of photovoltaic materials, thermoelectric materials, piezoelectric materials, and pyroelectric materials. It shows significant relevant progresses, which have reached the theoretical limitations of their energy harvesting performance. On the other side, this review collects a series of relevant innovative designs, including concentrating solar power devices, portable solar panels, horizontal wind turbines, piezoelectric-based (or pyroelectric-based) wind energy harvesters, and vibration-based piezoelectric harvesters. Based on their sizes, power outputs, and external environmental requirements, it is clear that some non-intrusive and movable energy harvesters can be quickly implemented on transportation infrastructures for producing considerable power outputs. As a result, through critically assessing current developments of all relevant advanced materials with innovative designs, a new research direction is explored to develop movable and non-intrusive energy harvesters suitable for transportation infrastructures. © 2022
Author Keywords Energy Harvesting; Photovoltaic materials; Piezoelectric materials; Pyroelectric materials; Thermoelectric materials; Transportation infrastructure


Similar Articles


Id Similarity Authors Title Published
6084 View0.886Fan P.; Zhang Y.; Wang X.; Jiang R.; Jia D.; Wang S.; Wang X.; Tai H.Acoustic Energy Harvesting: Innovations In Harvesters, Efficiency Enhancement Techniques, And Future ApplicationsSensors and Actuators A: Physical, 390 (2025)
6678 View0.885Alhumaid S.; Alharbi S.; Alshammrei S.Advancing Piezoelectric Wind Energy Solutions: Evaluating Turbine Rotor Blade Designs For Sustainable Smart City InfrastructureInternational Journal of Energy Research, 2025, 1 (2025)
40738 View0.879Ismail M.F.; Al-mahasne M.M.; Borowski G.; Alsaqoor S.; Alenezi A.; Al-Odienat A.Optimized Low-Speed Wind Energy Harvesters: Enhancing Piezoelectric And Triboelectric Performance For Urban ApplicationsJournal of Ecological Engineering, 26, 9 (2025)
918 View0.871Luo A.; Tan Q.; Xu W.; Huang J.; Gu S.; Guo X.; Lee C.; Fan K.; Wang F.A Comprehensive Review Of Energy Harvesting From Kinetic Energy At Low FrequencyAdvanced Materials Technologies (2025)
7301 View0.869Arish P.; Kumar Reddy P.G.; Ramcharan S.; Vijendra Babu D.Ambient Energy Capture From Human Footsteps Using Piezoelectric SensorsProceedings of 5th International Conference on Trends in Material Science and Inventive Materials, ICTMIM 2025 (2025)
61900 View0.86Lu C.; Jiang X.; Li L.; Zhou H.; Yang A.; Xin M.; Fu G.; Wang X.Wind Energy Harvester Using Piezoelectric MaterialsReview of Scientific Instruments, 93, 3 (2022)
59016 View0.86Li G.; Cui J.; Liu T.; Zheng Y.; Hao C.; Hao X.; Xue C.Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester With A Low Startup Wind Speed In Urban Self-Powered SensingMicromachines, 14, 2 (2023)
57748 View0.858Mohammed M.N.; Al-yousif S.; Alfiras M.; Rahman M.; Al-Tamimi A.N.J.; Sharif A.Toward Sustainable Smart Cities: Design And Development Of Piezoelectric-Based Footstep Power Generation SystemStudies in Systems, Decision and Control, 487 (2024)
38751 View0.855Wang Y.; Feng Y.; Li X.; Liu Z.; Chen C.; Cao D.; Li M.; Chuai X.; Peng Y.; Mei X.; Liu S.; Yang Z.; Wang Z.; Wang B.Mutualistic Symbiotic Wireless Node For Next-Era Smart TransportationNano Energy, 136 (2025)
46765 View0.855Pecunia V.; Silva S.R.P.; Phillips J.D.; Artegiani E.; Romeo A.; Shim H.; Park J.; Kim J.H.; Yun J.S.; Welch G.C.; Larson B.W.; Creran M.; Laventure A.; Sasitharan K.; Flores-Diaz N.; Freitag M.; Xu J.; Brown T.M.; Li B.; Wang Y.; Li Z.; Hou B.; Hamadani B.H.; Defay E.; Kovacova V.; Glinsek S.; Kar-Narayan S.; Bai Y.; Kim D.B.; Cho Y.S.; Žukauskaitė A.; Barth S.; Fan F.R.; Wu W.; Costa P.; del Campo J.; Lanceros-Mendez S.; Khanbareh H.; Wang Z.L.; Pu X.; Pan C.; Zhang R.; Xu J.; Zhao X.; Zhou Y.; Chen G.; Tat T.; Ock I.W.; Chen J.; Graham S.A.; Yu J.S.; Huang L.-Z.; Li D.-D.; Ma M.-G.; Luo J.; Jiang F.; Lee P.S.; Dudem B.; Vivekananthan V.; Kanatzidis M.G.; Xie H.; Shi X.-L.; Chen Z.-G.; Riss A.; Parzer M.; Garmroudi F.; Bauer E.; Zavanelli D.; Brod M.K.; Malki M.A.; Snyder G.J.; Kovnir K.; Kauzlarich S.M.; Uher C.; Lan J.; Lin Y.-H.; Fonseca L.; Morata A.; Martin-Gonzalez M.; Pennelli G.; Berthebaud D.; Mori T.; Quinn R.J.; Bos J.G.; Candolfi C.; Gougeon P.; Gall P.; Lenoir B.; Venkateshvaran D.; Kaestner B.; Zhao Y.; Zhang G.; Nonoguchi Y.; Schroeder B.C.; Bilotti E.; Menon A.K.; Urban J.J.; Fenwick O.; Asker C.; Talin A.A.; Anthopoulos T.D.; Losi T.; Viola F.; Caironi M.; Georgiadou D.G.; Ding L.; Peng L.-M.; Wang Z.; Wei M.-D.; Negra R.; Lemme M.C.; Wagih M.; Beeby S.; Ibn-Mohammed T.; Mustapha K.B.; Joshi A.P.Roadmap On Energy Harvesting MaterialsJPhys Materials, 6, 4 (2023)