Smart City Gnosys

Smart city article details

Title Network Flow Based Iot Botnet Attack Detection Using Deep Learning
ID_Doc 38988
Authors Sriram S.; Vinayakumar R.; Alazab M.; Soman K.P.
Year 2020
Published IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020
DOI http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162668
Abstract Governments around the globe are promoting smart city applications to enhance the quality of daily-life activities in urban areas. Smart cities include internet-enabled devices that are used by applications like health care, power grid, water treatment, traffic control, etc to enhance its effectiveness. The expansion in the quantity of Internet-of-things (IoT) based botnet attacks is due to the growing trend of Internet-enabled devices. To provide advanced cyber security solutions to IoT devices and smart city applications, this paper proposes a deep learning (DL) based botnet detection system that works on network traffic flows. The botnet detection framework collects the network traffic flows, converts them into connection records and uses a DL model to detect attacks emanating from the compromised IoT devices. To determine an optimal DL model, many experiments are conducted on well-known and recently released benchmark data sets. Further, the datasets are visualized to understand its characteristics. The proposed DL model outperformed the conventional machine learning (ML) models. © 2020 IEEE.
Author Keywords Big Data; Botnet; Cyber Security; Deep Learning; Internet of Things; Machine Learning; Smart Cities


Similar Articles


Id Similarity Authors Title Published
47757 View0.907Nagasundaram S.; Sindhuja R.; Rajesh Kanna B.; Rajalakshmi S.; Shobana G.; Srivastava A.Securing Iot-Edge Networks: Federated Deep Learning For Botnet Detection7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 - Proceedings (2023)
33508 View0.903Saini K.S.; Chaudhary S.Investigation On Attack Detection In Iot Networks: A Study And Analysis Of The Existing Machine Learning And Deep Learning Techniques3rd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2025 (2025)
34132 View0.896Ashraf, J; Keshk, M; Moustafa, N; Abdel-Basset, M; Khurshid, H; Bakhshi, AD; Mostafa, RRIotbot-Ids: A Novel Statistical Learning-Enabled Botnet Detection Framework For Protecting Networks Of Smart CitiesSUSTAINABLE CITIES AND SOCIETY, 72 (2021)
30732 View0.889Amine M.S.; Nada F.A.; Hosny K.M.Improved Model For Intrusion Detection In The Internet Of ThingsScientific Reports, 15, 1 (2025)
957 View0.889Houichi M.; Jaidi F.; Bouhoula A.A Comprehensive Study Of Intrusion Detection Within Internet Of Things-Based Smart Cities: Synthesis, Analysis And A Novel Approach2023 International Wireless Communications and Mobile Computing, IWCMC 2023 (2023)
23579 View0.887Prazeres N.; Costa R.L.D.C.; Santos L.; Rabadão C.Engineering The Application Of Machine Learning In An Ids Based On Iot Traffic FlowIntelligent Systems with Applications, 17 (2023)
47758 View0.887Zhou L.; Gaurav A.; Attar R.W.; Arya V.; Alhomoud A.; Chui K.T.Securing Iot-Enabled Smart Cities And Detecting Cyber Attacks In Smart Homes For A Greener FutureIEEE Internet of Things Magazine (2025)
1446 View0.884Rakha M.A.; Akbar A.; Chhabra G.; Kaushik K.; Arshi O.; Khan I.U.A Detailed Comparative Study Of Ai-Based Intrusion Detection System For Smart CitiesProceedings of International Conference on Communication, Computer Sciences and Engineering, IC3SE 2024 (2024)
29764 View0.884Bose S.; Maheswaran N.; Gokulraj G.; Anitha T.; Shruthi T.; Vijayaraj G.Hybrid Intrusion Detection System For Iot Against Adversarial Threats Using Intelligent Rdls ModelProceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics, ICDICI 2024 (2024)
35958 View0.884Lefoane M.; Ghafir I.; Kabir S.; Awan I.-U.Machine Learning For Botnet Detection: An Optimized Feature Selection ApproachACM International Conference Proceeding Series (2021)