16111  | 0.899 | Ilyas N.; Shahzad A.; Kim K. | Convolutional-Neural Network-Based Image Crowd Counting: Review, Categorization, Analysis, And Performance Evaluation | Sensors (Switzerland), 20, 1 (2020) |
17778  | 0.873 | Mansouri W.; Alohali M.A.; Alqahtani H.; Alruwais N.; Alshammeri M.; Mahmud A. | Deep Convolutional Neural Network-Based Enhanced Crowd Density Monitoring For Intelligent Urban Planning On Smart Cities | Scientific Reports, 15, 1 (2025) |
41571  | 0.873 | Tomar A.; Verma K.K.; Kumar P. | People Counting Via Supervised Learning-Based 2D Cnn-Lr Model In Complex Crowd Images | Lecture Notes in Electrical Engineering, 1231 LNEE (2024) |
4875  | 0.873 | Avvenuti M.; Bongiovanni M.; Ciampi L.; Falchi F.; Gennaro C.; Messina N. | A Spatio- Temporal Attentive Network For Video-Based Crowd Counting | Proceedings - IEEE Symposium on Computers and Communications, 2022-June (2022) |
16658  | 0.871 | Guo X.; Song K.; Gao M.; Zhai W.; Li Q.; Jeon G. | Crowd Counting In Smart City Via Lightweight Ghost Attention Pyramid Network | Future Generation Computer Systems, 147 (2023) |
16657  | 0.871 | Dong L.; Zhang H.; Yang K.; Zhou D.; Shi J.; Ma J. | Crowd Counting By Using Top-K Relations: A Mixed Ground-Truth Cnn Framework | IEEE Transactions on Consumer Electronics, 68, 3 (2022) |
16692  | 0.867 | Savner S.S.; Kanhangad V. | Crowdnext: Boosting Weakly Supervised Crowd Counting With Dual-Path Feature Aggregation And A Robust Loss Function | IEEE Transactions on Instrumentation and Measurement, 74 (2025) |
7671  | 0.851 | Zhai W.; Gao M.; Souri A.; Li Q.; Guo X.; Shang J.; Zou G. | An Attentive Hierarchy Convnet For Crowd Counting In Smart City | Cluster Computing, 26, 2 (2023) |