Smart City Gnosys

Smart city article details

Title Machine Learning-Inspired Intrusion Detection System For Iot: Security Issues And Future Challenges
ID_Doc 36080
Authors Ahanger T.A.; Ullah I.; Algamdi S.A.; Tariq U.
Year 2025
Published Computers and Electrical Engineering, 123
DOI http://dx.doi.org/10.1016/j.compeleceng.2025.110265
Abstract The Internet of Things (IoT) has revolutionized numerous domains, including smart grids, smart cities, healthcare, and business networks, by seamlessly integrating digital and physical systems. However, the rapid proliferation of IoT devices has introduced significant security challenges due to their resource constraints, heterogeneous architectures, and decentralized nature. Traditional security mechanisms, such as firewalls and IDS, often fail to address the unique vulnerabilities of IoT environments. This study provides a comprehensive analysis of the IDS market for IoT devices from 2014 to 2023, focusing on the evolution of deployment methods, emerging trends, and the integration of Artificial Intelligence (AI) strategies to enhance IoT security. The motivation for this research lies in the increasing reliance on IoT systems in critical infrastructures and the corresponding rise in sophisticated cyberattacks. Security breaches in IoT can lead to severe consequences, including data theft, service disruptions, and physical harm. To address these challenges, this study explores AI-driven techniques, such as Machine Learning (ML), Deep Learning (DL), and Federated Learning (FL), for detecting and mitigating complex intrusion patterns in IoT systems. By leveraging bibliographic analysis using VOS viewer, the study identifies key research themes, including blockchain-based security, DDoS mitigation, and cybersecurity for IoT, through keyword co-occurrence analysis with varying levels of overlap (50 to 250 keywords). This research also evaluates various IDS deployment methods, including Host-Based IDS (HIDS), Network-Based IDS (NIDS), and Hybrid IDS, based on metrics such as detection accuracy, resource efficiency, and adaptability to IoT environments. A detailed examination of IoT-specific intrusions, such as Sybil attacks, malicious node attacks, and memory exhaustion (DoS) attacks, is conducted to highlight vulnerabilities and propose AI-enhanced solutions. The novelty of this study lies in its integration of AI strategies into IDS frameworks, comprehensive market analysis over a decade, and systematic evaluation of IDS deployment tailored to IoT systems. The findings reveal that AI-driven IDS can significantly improve intrusion detection capabilities while addressing the resource constraints of IoT devices. This research provides actionable insights for researchers and practitioners, paving the way for the development of more robust and adaptive IDS frameworks to secure the rapidly expanding IoT ecosystem. © 2025 Elsevier Ltd
Author Keywords Deep Learning; Internet of Things; Intrusion detection system; Machine Learning; security


Similar Articles


Id Similarity Authors Title Published
36064 View0.953Alfahaid A.; Alalwany E.; Almars A.M.; Alharbi F.; Atlam E.; Mahgoub I.Machine Learning-Based Security Solutions For Iot Networks: A Comprehensive SurveySensors, 25, 11 (2025)
33346 View0.951Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
6670 View0.95Zhukabayeva T.; Benkhelifa E.; Satybaldina D.; Rehman A.U.Advancing Iot Security: A Review Of Intrusion Detection Systems Challenges And Emerging Solutions2024 11th International Conference on Software Defined Systems, SDS 2024 (2024)
37199 View0.938Al-Ambusaidi M.; Yinjun Z.; Muhammad Y.; Yahya A.Ml-Ids: An Efficient Ml-Enabled Intrusion Detection System For Securing Iot Networks And ApplicationsSoft Computing, 28, 2 (2024)
32899 View0.935Sarker I.H.; Khan A.I.; Abushark Y.B.; Alsolami F.Internet Of Things (Iot) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions And Research DirectionsMobile Networks and Applications, 28, 1 (2023)
32898 View0.926Kaur B.; Dadkhah S.; Shoeleh F.; Neto E.C.P.; Xiong P.; Iqbal S.; Lamontagne P.; Ray S.; Ghorbani A.A.Internet Of Things (Iot) Security Dataset Evolution: Challenges And Future DirectionsInternet of Things (Netherlands), 22 (2023)
6993 View0.924Alhamdi M.J.M.; Lopez-Guede J.M.; AlQaryouti J.; Rahebi J.; Zulueta E.; Fernandez-Gamiz U.Ai-Based Malware Detection In Iot Networks Within Smart Cities: A SurveyComputer Communications, 233 (2025)
46467 View0.923Chiba Z.; Abghour N.; Moussaid K.; Lifandali O.; Kinta R.Review Of Recent Intrusion Detection Systems And Intrusion Prevention Systems In Iot Networks2022 30th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2022 (2022)
3095 View0.923Rafrafi M.; Ghazel C.; Saidane L.A New Model For Enhancing Iot Security Through Hybrid Optimization Of Intrusion Detection2024 13th IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks, PEMWN 2024 (2024)
9199 View0.921Mazhar T.; Talpur D.B.; Shloul T.A.; Ghadi Y.Y.; Haq I.; Ullah I.; Ouahada K.; Hamam H.Analysis Of Iot Security Challenges And Its Solutions Using Artificial IntelligenceBrain Sciences, 13, 4 (2023)