Smart City Gnosys

Smart city article details

Title Machine Learning-Enabled Internet Of Things (Iot): Data, Applications, And Industry Perspective
ID_Doc 36075
Authors Bzai J.; Alam F.; Dhafer A.; Bojović M.; Altowaijri S.M.; Niazi I.K.; Mehmood R.
Year 2022
Published Electronics (Switzerland), 11, 17
DOI http://dx.doi.org/10.3390/electronics11172676
Abstract Machine learning (ML) allows the Internet of Things (IoT) to gain hidden insights from the treasure trove of sensed data and be truly ubiquitous without explicitly looking for knowledge and data patterns. Without ML, IoT cannot withstand the future requirements of businesses, governments, and individual users. The primary goal of IoT is to perceive what is happening in our surroundings and allow automation of decision-making through intelligent methods, which will mimic the decisions made by humans. In this paper, we classify and discuss the literature on ML-enabled IoT from three perspectives: data, application, and industry. We elaborate with dozens of cutting-edge methods and applications through a review of around 300 published sources on how ML and IoT work together to play a crucial role in making our environments smarter. We also discuss emerging IoT trends, including the Internet of Behavior (IoB), pandemic management, connected autonomous vehicles, edge and fog computing, and lightweight deep learning. Further, we classify challenges to IoT in four classes: technological, individual, business, and society. This paper will help exploit IoT opportunities and challenges to make our societies more prosperous and sustainable. © 2022 by the authors.
Author Keywords data imputation; edge and fog computing; feature selection; Internet of Behavior (IoB); Internet of Things (IoT); lightweight deep learning; machine learning; outliers; smart cities; smart homes


Similar Articles


Id Similarity Authors Title Published
28691 View0.942Goel N.; Yadav R.K.Handbook Of Research On Machine Learning-Enabled Iot For Smart Applications Across IndustriesHandbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries (2023)
35888 View0.936Rashmi Bandara M.S.; Halgamuge M.N.; Marques G.Machine Learning And Internet Of Things For Smart Living: A Comprehensive Review And AnalysisStudies in Fuzziness and Soft Computing, 410 (2021)
35982 View0.933Alsamhi S.H.; Almalki F.A.; Al-Dois H.; Ben Othman S.; Hassan J.; Hawbani A.; Sahal R.; Lee B.; Saleh H.Machine Learning For Smart Environments In B5G Networks: Connectivity And QosComputational Intelligence and Neuroscience, 2021 (2021)
56602 View0.926Mishra S.; Tyagi A.K.The Role Of Machine Learning Techniques In Internet Of Things-Based Cloud ApplicationsInternet of Things (2022)
36064 View0.924Alfahaid A.; Alalwany E.; Almars A.M.; Alharbi F.; Atlam E.; Mahgoub I.Machine Learning-Based Security Solutions For Iot Networks: A Comprehensive SurveySensors, 25, 11 (2025)
8624 View0.924Peralta Abadía J.J.; Smarsly K.An Introduction And Systematic Review On Machine Learning For Smart Environments/Cities: An Iot ApproachIntelligent Systems Reference Library, 121 (2022)
35990 View0.922Chen Z.; Tian P.; Qian C.; Liao W.; Hussaini A.; Yu W.Machine Learning Frameworks In Iot Systems: A Survey, Case Study, And Future Research DirectionsSmart Spaces: a volume in Intelligent Data-Centric Systems (2024)
36025 View0.919Afshan N.; Rout R.K.Machine Learning Techniques For Iot Data AnalyticsBig Data Analytics for Internet of Things (2021)
6522 View0.917Dhanalakshmi M.; Nand Kishor Kumar G.; Himabindu G.; Gosavi V.R.; Sundar Ganesh C.S.; Premanand R.Advanced Machine Learning Innovations In Embedded Systems And Narrowband Internet Of Things (Nb-Iot) DevicesIntegrating Artificial Intelligence Into the Energy Sector (2025)
32899 View0.917Sarker I.H.; Khan A.I.; Abushark Y.B.; Alsolami F.Internet Of Things (Iot) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions And Research DirectionsMobile Networks and Applications, 28, 1 (2023)