Smart City Gnosys

Smart city article details

Title Leveraging Machine Learning And Sdn-Fog Infrastructure To Mitigate Flood Attacks
ID_Doc 35103
Authors Sharma H.; Gupta S.
Year 2021
Published 2021 IEEE Globecom Workshops, GC Wkshps 2021 - Proceedings
DOI http://dx.doi.org/10.1109/GCWkshps52748.2021.9681984
Abstract The use of IoT devices is growing rapidly and it is playing a critical role in a diverse set of industries. It has been instrumental in the growth of smart cities. Smart cities have emerged as a paradigm for urban development which aims to be sustainable, efficient and improve accessibility. However, the limited processing power of IoT devices makes them susceptible to flood-based attacks. Denial of Service attacks can overwhelm the computing resources or network bandwidth of IoT networks. Since IoT devices power critical infrastructure like traffic management in smart cities, adequate defense of such networks from malicious actors is imperative. In this article, the authors propose a framework tailored for detection and mitigation of flood-based attacks in smart city infrastructure. The proposed smart city framework aims to reduce latency of attack detection by using fog computing for feature extraction and security maintenance. It allows scalability by utilizing SDN and fog infrastructure for mitigation of attacks. We have analysed and utilized packet-level features which are excellent for distinguishing between IoT and attack traffic. We have trained and quantitatively compared 5 state-of-the-art supervised machine learning models for attack detection in this paper. We were able to achieve an accuracy of 99.9% on our simulated dataset in attack detection. © 2021 IEEE.
Author Keywords Flood Attacks; IoT; Machine Learning; Privacy; Smart City


Similar Articles


Id Similarity Authors Title Published
4457 View0.919Alshahrani M.M.A Secure And Intelligent Software-Defined Networking Framework For Future Smart Cities To Prevent Ddos AttackApplied Sciences (Switzerland), 13, 17 (2023)
3359 View0.899Houichi M.; Jaidi F.; Bouhoula A.A Novel Framework For Attack Detection And Localization In Smart Cities2024 17th International Conference on Security of Information and Networks, SIN 2024 (2024)
49172 View0.896Ali H.; Elzeki O.M.; Elmougy S.Smart Attacks Learning Machine Advisor System For Protecting Smart Cities From Smart ThreatsApplied Sciences (Switzerland), 12, 13 (2022)
19242 View0.896Iqbal M.W.; Issa G.F.; Yousif M.; Atif M.Detection And Replay Of Distributed Denial Of Service Attacks In Smart Cities Using A Hybrid Deep Learning Approach2nd International Conference on Business Analytics for Technology and Security, ICBATS 2023 (2023)
2456 View0.894Elsaeidy A.; Munasinghe K.S.; Sharma D.; Jamalipour A.A Machine Learning Approach For Intrusion Detection In Smart CitiesIEEE Vehicular Technology Conference, 2019-September (2019)
14401 View0.892Gore S.; Mahankale N.; Gore S.; Kadu S.; Belhe S.A.Cloud Computing For Effective Cyber Security Attack Detection In Smart Cities2023 4th IEEE Global Conference for Advancement in Technology, GCAT 2023 (2023)
17576 View0.891Nirosha V.; Hemamalini V.Ddos Attack Detection System For Iot Enabled Smart City Applications With Correlation Analysis2024 4th International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2024 (2024)
3390 View0.888Gupta B.B.; Chui K.T.; Gaurav A.; Arya V.; Chaurasia P.A Novel Hybrid Convolutional Neural Network- And Gated Recurrent Unit-Based Paradigm For Iot Network Traffic Attack Detection In Smart CitiesSensors (Basel, Switzerland), 23, 21 (2023)
18314 View0.888Abdulla H.; Al-Raweshidy H.S.; Awad W.Denial Of Service Detection For Iot Networks Using Machine LearningInternational Conference on Agents and Artificial Intelligence, 3 (2023)
33934 View0.887Shukla P.; Krishna C.R.; Patil N.V.Iot Traffic-Based Ddos Attacks Detection Mechanisms: A Comprehensive ReviewJournal of Supercomputing, 80, 7 (2024)