Smart City Gnosys

Smart city article details

Title Investigation Of Hybrid Models And Architectures For Real-Time Adaptive Passenger Flow Prediction
ID_Doc 33476
Authors Begisbayev D.; Sakhipov A.; Seiitbek R.; Mansurova A.; Mansurova A.
Year 2024
Published Proceedings - 2024 7th International Conference on Data Science and Information Technology, DSIT 2024
DOI http://dx.doi.org/10.1109/DSIT61374.2024.10880981
Abstract This study presents a theoretical foundation for a hybrid machine-learning model designed for real-time adaptive passenger flow prediction in public transportation systems. By integrating both historical and real-time data, the model aims to enhance demand forecasting accuracy and support optimized resource allocation. The proposed model combines Long Short-Term Memory (LSTM) networks for time-series dependencies with Graph Convolutional Networks (GCNs) to capture spatial relationships, enabling dynamic adaptation to changing patterns in passenger flow. Although this study is theoretical, anticipated practical applications include improved scheduling efficiency and responsiveness in transit systems, contributing to sustainable resource management. Key challenges, such as computational complexity and scalability for large datasets, are discussed alongside potential gains in prediction accuracy over traditional models, positioning this approach as a promising step forward in adaptive transit systems. © 2024 IEEE.
Author Keywords data-driven optimization; hybrid machine learning; neural networks; passenger flow prediction; public transit systems; Real-time adaptive systems; smart cities; time-series analysis


Similar Articles


Id Similarity Authors Title Published
1983 View0.904Drosouli I.; Voulodimos A.; Mastorocostas P.; Miaoulis G.; Ghazanfarpour D.A Graph Neural Network Based Learning Model For Urban Metro Flow PredictionProceedings - 22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023 (2023)
4873 View0.895Drosouli I.; Voulodimos A.; Mastorocostas P.; Miaoulis G.; Ghazanfarpour D.A Spatial-Temporal Graph Convolutional Recurrent Network For Transportation Flow EstimationSensors, 23, 17 (2023)
8885 View0.888Shiming M.; Shan L.; Quansheng L.An Optimized Lstm Passenger Flow Prediction Model For Smart CitiesProceedings - 2023 3rd Asia-Pacific Conference on Communications Technology and Computer Science, ACCTCS 2023 (2023)
24041 View0.87Ghosh A.; Giacobbe M.; Rafiq M.T.; Puliafito A.; Giorgi R.Enhancing Traffic Prediction With Spatio-Temporal Deep Learning: A Gcn-Lstm Hybrid Model2025 14th Mediterranean Conference on Embedded Computing, MECO 2025 - Proceedings (2025)
17927 View0.87Monje L.; Carrasco R.A.; Rosado C.; Sánchez-Montañés M.Deep Learning Xai For Bus Passenger Forecasting: A Use Case In SpainMathematics, 10, 9 (2022)
26414 View0.87Qiu T.; Lam C.-T.; Liu B.; Ng B.K.; Yuan X.; Im S.K.Fen-Mrmgcn: A Frontend-Enhanced Network Based On Multi-Relational Modeling Gcn For Bus Arrival Time PredictionIEEE Access, 13 (2025)
13624 View0.87Uddin Gilani S.A.; Al-Rajab M.; Bakka M.Challenges And Opportunities In Traffic Flow Prediction: Review Of Machine Learning And Deep Learning Perspectives; [Desafíos Y Oportunidades En La Predicción Del Flujo De Tráfico: Revisión De Las Perspectivas De Aprendizaje Automático Y Aprendizaje Profundo]Data and Metadata, 3 (2024)
25549 View0.869Kong X.; Wang K.; Hou M.; Xia F.; Karmakar G.; Li J.Exploring Human Mobility For Multi-Pattern Passenger Prediction: A Graph Learning FrameworkIEEE Transactions on Intelligent Transportation Systems, 23, 9 (2022)
44467 View0.868Saranya V.S.; Subbarao G.; Balakotaiah D.; Bhavsingh M.; Babu K.S.; Dhanikonda S.R.Real-Time Traffic Flow Optimization Using Adaptive Iot And Data Analytics: A Novel Deepstreamnet Model4th International Conference on Sustainable Expert Systems, ICSES 2024 - Proceedings (2024)
43720 View0.865Chu K.-F.; Lam A.Y.S.; Loo B.P.Y.; Li V.O.K.Public Transport Waiting Time Estimation Using Semi-Supervised Graph Convolutional Networks2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 (2019)