Smart City Gnosys

Smart city article details

Title Intelligent Transportation System Using Vehicular Networks In The Internet Of Vehicles For Smart Cities
ID_Doc 32646
Authors Limkar S.; Ashok W.V.; Shende P.; Wagh K.; Wagh S.K.; Kumar A.
Year 2023
Published Journal of Electrical Systems, 19, 2
DOI http://dx.doi.org/10.52783/jes.691
Abstract Modern smart cities face significant mobility difficulties, and the combination of Intelligent Transportation Systems (ITS) and Vehicular Networks (VN) within the context of the Internet of Vehicles (IoV) promises a transformative approach to tackling these challenges. This abstract captures the core of this ground-breaking approach. Traffic congestion, environmental challenges, and road safety are crucial considerations in the context of smart cities. Traffic management systems and automobiles can communicate real-time data thanks to the support provided by vehicular networks. By incorporating automobiles into the larger IoT ecosystem, the Internet of automobiles expands this connection and broadens the range of available services and applications. This study introduces a novel Intelligent Transport System designed for the context of vehicular network traffic based on Internet of Vehicles (IoV) in smart cities. The machine learning models used to build the system are Decision Tree (DT), Support Vector Machine (SVM), Neural Network, K-Nearest Neighbours (KNN), and Naive Bayes. The simulation results show the system's effectiveness in producing astonishing results through a thorough review. In particular, it maintains computing efficiency while achieving a noteworthy level of detection accuracy. This success can be due to the skilful use of feature selection and ensemble learning approaches, which together improve the system's performance. In summary, this research provides a state-of-the-art approach that makes use of machine learning models to enhance traffic control in IoV-based vehicle networks in smart city scenarios. In comparing different model in intelligent system the CNN leads with 98.87% followed by the other methods as discuss in result section. It also promising development in the field of intelligent transportation systems because it not only improves detection accuracy but also ensures computing efficiency. General Terms:: Classification, Smart city, Internet of Vehicle. © JES 2023 on-line: journal.esrgroups.org
Author Keywords Intelligent Transportation; Internet of Vehicle; Machine Learning; Smart Cities; Vehicular Network


Similar Articles


Id Similarity Authors Title Published
5762 View0.954Prakash J.; Murali L.; Manikandan N.; Nagaprasad N.; Ramaswamy K.A Vehicular Network Based Intelligent Transport System For Smart Cities Using Machine Learning AlgorithmsScientific Reports, 14, 1 (2024)
32642 View0.928Rani P.; Sharma R.Intelligent Transportation System For Internet Of Vehicles Based Vehicular Networks For Smart CitiesComputers and Electrical Engineering, 105 (2023)
49871 View0.924Saleem M.; Abbas S.; Ghazal T.M.; Adnan Khan M.; Sahawneh N.; Ahmad M.Smart Cities: Fusion-Based Intelligent Traffic Congestion Control System For Vehicular Networks Using Machine Learning TechniquesEgyptian Informatics Journal, 23, 3 (2022)
58554 View0.912Ouhmidou H.; Nabou A.; Ikidid A.; Bouassaba W.; Ouzzif M.; El Kiram M.A.Traffic Control, Congestion Management And Smart Parking Through Vanet, Ml, And Iot: A ReviewProceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023 (2023)
22879 View0.903Mahesh C.; Sumithra M.; Rao Ranga M.; Kumar K.R.; Suganthi D.; Karthiyayini S.Employing A Deep Learning Technique To Categorize Internet Of Things (Iot) Traffic In A Smart City ContextProceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023 (2023)
22878 View0.902Anu Priya S.; Rajesh kanna B.; Beaulah Jeyavathana R.; Bhat N.; Rajalakshmi S.; Srimathi S.Employing A Deep Learning Technique To Categorize Internet Of Things (Iot) Traffic In A Smart City Context2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023 (2023)
8520 View0.902Shamitha C.; Radhika S.; Malathy K.; Ranjith S.; Sasirekha N.An Intelligent Iot Enabled Traffic Queue Handling System Using Machine Learning AlgorithmProceedings of the 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2022 (2022)
30638 View0.902Sabeer S.; Ali S.S.; Siddiqua A.; Anjum A.Implementing Ml And Iot-Based Predictive Traffic-Management Systems For Smart Cities2024 2nd International Conference Computational and Characterization Techniques in Engineering and Sciences, IC3TES 2024 (2024)
33954 View0.9Kavitha D.; Ravikumar S.; Naghul Pranav K.R.Iot-Based Autonomous Vehicle System For Maintaining Driving Safety And Comfortability Based On Machine Learning TechniquesDigital Twin and Blockchain for Smart Cities (2025)
1444 View0.9Vamsi B.; Doppala B.P.; Mahanty M.; Veeraiah D.; Rao J.N.; Rao B.V.S.A Detailed Case Study On Various Challenges In Vehicular Networks For Smart Traffic Control System Using Machine Learning AlgorithmsArtificial Intelligence and Machine Learning for Smart Community: Concepts and Applications (2024)