Smart City Gnosys

Smart city article details

Title Feasibility Of Economic Forecasting Model Based On Intelligent Algorithm Of Smart City
ID_Doc 26251
Authors He Y.; Li X.
Year 2022
Published Mobile Information Systems, 2022
DOI http://dx.doi.org/10.1155/2022/9723190
Abstract Smart cities make better use of space and have less traffic, cleaner air, and more efficient municipal services, improving people's quality of life. The vast number of vehicles continually seeking to reach crowded spots in smart cities complicates acquiring a public parking space. It presents challenges for both traffic and residents. With such vast populations, road congestion is a serious challenge. It wastes vital resources such as fuel, money, and, most importantly, time. Finding a good location to park is one of the reasons for traffic congestion on the highway. This paper proposes a deep learning-based economic forecasting model (DL-EFM) for long-term economic growth in smart cities. Traffic management is vital for cities to guarantee that people and products can move freely across the city. Many automobiles attempting to reach crowded areas in smart cities make getting a public parking place difficult. It is inconvenient for both drivers and residents. Different traffic management authorities have implemented an artificial neural network (ANN) to resolve the issue, and modern vehicle systems have been coupled with intelligent parking solutions. The experimental outcome of the deep learning-based economic forecasting model improves traffic estimation, accuracy prediction in traffic flow, traffic management, and smart parking when compared to existing methods. © 2022 Yongting He and XiaoKe Li.
Author Keywords


Similar Articles


Id Similarity Authors Title Published
7788 View0.9Bahaddad A.; Almarhabi K.; Alshahrani M.; Mnzool M.; Elhassan A.A.M.; Alzughaibi A.; Alghamdi A.M.An Efficient Algorithm For Traffic Flow Evaluation On Smart Cities Based On Deep LearningThermal Science, 29, 2 (2025)
10797 View0.892Zaman M.; Saha S.; Abdelwahed S.Assessing The Suitability Of Different Machine Learning Approaches For Smart Traffic Mobility2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 (2023)
58592 View0.891Cenni D.; Han Q.Traffic Flow Prediction Using Uber Movement DataLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 594 LNICST (2024)
23044 View0.891Revathy G.; Thangavel M.; Senthilvadivu S.; Savithri M.C.Enabling Smart Cities: Ai-Powered Prediction Models For Urban Traffic Optimization4th International Conference on Sentiment Analysis and Deep Learning, ICSADL 2025 - Proceedings (2025)
1340 View0.89Arjona J.; Linares M.P.; Casanovas J.A Deep Learning Approach To Real-Time Parking Availability Prediction For Smart CitiesACM International Conference Proceeding Series (2019)
58657 View0.888Selvan C.; Senthil Kumar R.; Iwin Thanakumar Joseph S.; Malin Bruntha P.; Amanullah M.; Arulkumar V.Traffic Prediction Using Gps Based Cloud Data Through Rnn-Lstm-Cnn Models: Addressing Road Congestion, Safety, And Sustainability In Smart CitiesSN Computer Science, 6, 2 (2025)
46059 View0.884Hassan T.U.; Khurram A.B.; Iqbal S.; Malik A.W.; Fraz M.M.Resolving Community Parking Issues: An Iot Enabled Statistical And Deep Learning Approach For Enhanced Urban Parking Management2024 International Conference on Frontiers of Information Technology, FIT 2024 (2024)
8929 View0.884Mrad S.; Mraihi R.An Overview Of Model-Driven And Data-Driven Forecasting Methods For Smart TransportationStudies in Big Data, 132 (2023)
51592 View0.881Pritha A.; Fathima G.Smart Traffic Management: A Deep Learning Revolution In Traffic Prediction - A ReviewIET Conference Proceedings, 2024, 23 (2024)
30883 View0.881Arjona J.; Linares M.; Casanovas-Garcia J.; Vázquez J.J.Improving Parking Availability Information Using Deep Learning TechniquesTransportation Research Procedia, 47 (2020)