Smart City Gnosys

Smart city article details

Title Ensemble Learning-Based Algorithms For Traffic Flow Prediction In Smart Traffic Systems
ID_Doc 24116
Authors Alkarim A.S.; Al-Ghamdi A.S.A.-M.; Ragab M.
Year 2024
Published Engineering, Technology and Applied Science Research, 14, 2
DOI http://dx.doi.org/10.48084/etasr.6767
Abstract Due to the tremendous growth of road traffic accidents, Intelligent Transportation Systems (ITSs) are becoming even more important. To prevent road traffic accidents in the long term, it is necessary to find new vehicle flow management techniques in order to optimize traffic flow. With the high growth of deep learning and machine learning, these methods are increasingly being used in ITSs. This research provides a novel conceptual ITS model that aims to predict vehicle movement through the collective learning usage to anticipate intersections. The proposed approach consists of three main stages: data collection through cameras and sensors, implementation of machine learning and deep learning algorithms, and result evaluation, utilizing the coefficient of determination (R-squared), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). To accomplish this, various machine learning and deep learning algorithms, such as Random Forest, LSTM, Linear Regression, and ensemble methods (bagging), were incorporated into the model. The findings revealed the enhancement due to the proposed method, which was observed through a significant performance improvement of 93.52%. © 2024, Dr D. Pylarinos. All rights reserved.
Author Keywords bagging ensemble learning; intelligent transportation systems; prediction models; smart cities; smart traffic systems; traffic flow


Similar Articles


Id Similarity Authors Title Published
8075 View0.899Zheng G.; Chai W.K.; Katos V.An Ensemble Model For Short-Term Traffic Prediction In Smart City Transportation SystemProceedings - IEEE Global Communications Conference, GLOBECOM (2019)
1395 View0.895Tripathi A.N.; Sharma B.A Deep Review: Techniques, Findings And Limitations Of Traffic Flow Prediction Using Machine LearningLecture Notes in Mechanical Engineering (2023)
58652 View0.894Swathi V.; Yerraboina S.; Mallikarjun G.; Jhansirani M.Traffic Prediction For Intelligent Transportation System Using Machine Learning2022 2nd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2022 (2022)
3199 View0.886Li Y.; Liu H.; Li Y.; Cao Z.; Duan Z.A Novel Adaptive Ensemble Model Framework For Short-Term Traffic Flow Prediction Based On Model Selection And Multi-Objective OptimizationProceedings of SPIE - The International Society for Optical Engineering, 12058 (2021)
25858 View0.884Expression Of Concern: Implementation Of Machine Learning Techniques For Predicting Traffic Flow In Smart Cities (2023 6Th International Conference On Contemporary Computing And Informatics (Ic3I) Doi: 10.1109/Ic3I59117.2023.10397998)Proceedings of International Conference on Contemporary Computing and Informatics, IC3I 2023 (2023)
30571 View0.882Goyal V.; Bore M.; Gori Y.; Mayuri K.; Rao A.L.N.; Krishna O.Implementation Of Machine Learning Techniques For Predicting Traffic Flow In Smart CitiesProceedings of International Conference on Contemporary Computing and Informatics, IC3I 2023 (2023)
58585 View0.879Navarro-Espinoza A.; López-Bonilla O.R.; García-Guerrero E.E.; Tlelo-Cuautle E.; López-Mancilla D.; Hernández-Mejía C.; Inzunza-González E.Traffic Flow Prediction For Smart Traffic Lights Using Machine Learning AlgorithmsTechnologies, 10, 1 (2022)
35912 View0.878Kulkarni A.; Anitha P.; Valluri J.Y.; Sunena Rose M.V.; Hemavathi U.; Hussein O.M.Machine Learning Approaches For Efficient Traffic Flow In Smart Cities3rd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, ODICON 2024 (2024)
22862 View0.877Jenifer J.; Jemima Priyadarsini R.Empirical Research On Machine Learning Models And Feature Selection For Traffic Congestion Prediction In Smart CitiesInternational Journal on Recent and Innovation Trends in Computing and Communication, 11 (2023)
60223 View0.876Tsalikidis N.; Mystakidis A.; Koukaras P.; Ivaškevičius M.; Morkūnaitė L.; Ioannidis D.; Fokaides P.A.; Tjortjis C.; Tzovaras D.Urban Traffic Congestion Prediction: A Multi-Step Approach Utilizing Sensor Data And Weather InformationSmart Cities, 7, 1 (2024)