Smart City Gnosys

Smart city article details

Title Urban Traffic Congestion Prediction: A Multi-Step Approach Utilizing Sensor Data And Weather Information
ID_Doc 60223
Authors Tsalikidis N.; Mystakidis A.; Koukaras P.; Ivaškevičius M.; Morkūnaitė L.; Ioannidis D.; Fokaides P.A.; Tjortjis C.; Tzovaras D.
Year 2024
Published Smart Cities, 7, 1
DOI http://dx.doi.org/10.3390/smartcities7010010
Abstract The continuous growth of urban populations has led to the persistent problem of traffic congestion, which imposes adverse effects on quality of life, such as commute times, road safety, and the local air quality. Advancements in Internet of Things (IoT) sensor technology have contributed to a plethora of new data streams regarding traffic conditions. Therefore, the recognition and prediction of traffic congestion patterns utilizing such data have become crucial. To that end, the integration of Machine Learning (ML) algorithms can further enhance Intelligent Transportation Systems (ITS), contributing to the smart management of transportation systems and effectively tackling traffic congestion in cities. This study seeks to assess a wide range of models as potential solutions for an ML-based multi-step forecasting approach intended to improve traffic congestion prediction, particularly in areas with limited historical data. Various interpretable predictive algorithms, suitable for handling the complexity and spatiotemporal characteristics of urban traffic flow, were tested and eventually shortlisted based on their predictive performance. The forecasting approach selects the optimal model in each step to maximize the accuracy. The findings demonstrate that, in a 24 h step prediction, variating Ensemble Tree-Based (ETB) regressors like the Light Gradient Boosting Machine (LGBM) exhibit superior performances compared to traditional Deep Learning (DL) methods. Our work provides a valuable contribution to short-term traffic congestion predictions and can enable more efficient scheduling of daily urban transportation. © 2024 by the authors.
Author Keywords Deep Learning; Machine Learning; road traffic; smart cities; time series forecasting; traffic congestion prediction; weather information


Similar Articles


Id Similarity Authors Title Published
37160 View0.93Ei Leen M.W.; Jafry N.H.A.; Salleh N.M.; Hwang H.J.; Jalil N.A.Mitigating Traffic Congestion In Smart And Sustainable Cities Using Machine Learning: A ReviewLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13957 LNCS (2023)
19433 View0.922Al-Jawahry H.M.Developing An Intelligent Traffic Management System For Smart Cities Through The Integration Of Machine Learning And Iot TechnologiesLecture Notes in Networks and Systems, 1306 LNNS (2025)
934 View0.921Bakir D.; Moussaid K.; Chiba Z.; Abghour N.A Comprehensive Review Of Traffic Congestion Prediction Models: Machine Learning And Statistical Approaches2024 IEEE International Conference on Computing, ICOCO 2024 (2024)
6715 View0.916Priya K.; Priyadharshini K.; Krishnan R.S.; Raj J.R.F.; Settu I.J.; Srinivasan A.Advancing Urban Traffic Control With Iot And Deep Learning: A Yolov8 And Lstm-Based Adaptive Signal SystemProceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2025 (2025)
5762 View0.914Prakash J.; Murali L.; Manikandan N.; Nagaprasad N.; Ramaswamy K.A Vehicular Network Based Intelligent Transport System For Smart Cities Using Machine Learning AlgorithmsScientific Reports, 14, 1 (2024)
22862 View0.914Jenifer J.; Jemima Priyadarsini R.Empirical Research On Machine Learning Models And Feature Selection For Traffic Congestion Prediction In Smart CitiesInternational Journal on Recent and Innovation Trends in Computing and Communication, 11 (2023)
7046 View0.914Rathore S.P.S.; Farhaoui Y.; Aniebonam E.E.; Nagpal T.; Thanuja M.; Kaushik P.Ai-Driven Traffic Congestion Management: A Predictive Analytics Approach For Smart Cities2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2025 (2025)
1395 View0.914Tripathi A.N.; Sharma B.A Deep Review: Techniques, Findings And Limitations Of Traffic Flow Prediction Using Machine LearningLecture Notes in Mechanical Engineering (2023)
39398 View0.913Peng Z.; Yin L.Nonlinear Prediction Model Of Vehicle Network Traffic Management Based On The Internet Of ThingsSystems and Soft Computing, 7 (2025)
8075 View0.913Zheng G.; Chai W.K.; Katos V.An Ensemble Model For Short-Term Traffic Prediction In Smart City Transportation SystemProceedings - IEEE Global Communications Conference, GLOBECOM (2019)