Smart City Gnosys

Smart city article details

Title Enhancing Internet Of Things Security: Evaluating Machine Learning Classifiers For Attack Prediction
ID_Doc 23835
Authors Arabiat A.; Altayeb M.
Year 2024
Published International Journal of Electrical and Computer Engineering, 14, 5
DOI http://dx.doi.org/10.11591/ijece.v14i5.pp6036-6046
Abstract The internet of things (IoT) has contributed to improving the quality of service and operational efficiency in many areas, such as smart cities, but this technology has faced a major dilemma: the problem of cyber-attacks of various types. In this study, we relied on the use of machine learning (ML) and deep learning (DL) techniques to present a proposed model of an intrusion detection system (IDS) for detecting different types of IoT attacks that include ARP_poisoning, DOS_SYN_Hping, MQTT_Publish, NMAP_FIN_SCAN, NMAP_OS_DETECTION, and Thing_Speak. However, the proposed model is built using Orange3 data mining tools. The model consists of random forest (RF), artificial neural network (ANN), logistic regression (LR), and support vector machine (SVM) classifiers. On the other hand, the data set that is used was obtained from the Kaggle platform's real-time IoT infrastructure data set, called RT-IoT2022. The data set consists of a huge number of records, which are processed and then reduced to 7,481 records using linear discriminant analysis. In the next stage, the data set is fed to the Orange3 data mining tool, which is divided into 70% of the training dataset and 30% of the test dataset, in addition to using fold-cross validation to increase accuracy and avoid overfitting. Thus, the experimental results showed the superiority of RF with a classification accuracy of (99.9%), while the accuracy in ANN reached (99.8%), (97.8%) in LR, and finally, for SVM, the accuracy reached (92.9%). © 2024 Institute of Advanced Engineering and Science. All rights reserved.
Author Keywords Cyber attack; Internet of things; Intrusion detection system; Machine learning; Orange3


Similar Articles


Id Similarity Authors Title Published
24715 View0.918Ali M.; Pervez S.; Hosseini S.E.; Siddhu M.K.Evaluation And Detection Of Cyberattack In Iot-Based Smart City Networks Using Machine Learning On The Unsw-Nb15 DatasetInternational Journal of Online and Biomedical Engineering, 21, 2 (2025)
33346 View0.916Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
33508 View0.915Saini K.S.; Chaudhary S.Investigation On Attack Detection In Iot Networks: A Study And Analysis Of The Existing Machine Learning And Deep Learning Techniques3rd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2025 (2025)
32898 View0.909Kaur B.; Dadkhah S.; Shoeleh F.; Neto E.C.P.; Xiong P.; Iqbal S.; Lamontagne P.; Ray S.; Ghorbani A.A.Internet Of Things (Iot) Security Dataset Evolution: Challenges And Future DirectionsInternet of Things (Netherlands), 22 (2023)
37199 View0.908Al-Ambusaidi M.; Yinjun Z.; Muhammad Y.; Yahya A.Ml-Ids: An Efficient Ml-Enabled Intrusion Detection System For Securing Iot Networks And ApplicationsSoft Computing, 28, 2 (2024)
33032 View0.908Dawoud A.; Sianaki O.A.; Shahristani S.; Raun C.Internet Of Things Intrusion Detection: A Deep Learning Approach2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 (2020)
6991 View0.907Aljohani R.; Bushnag A.; Alessa A.Ai-Based Intrusion Detection For A Secure Internet Of Things (Iot)Journal of Network and Systems Management, 32, 3 (2024)
30732 View0.907Amine M.S.; Nada F.A.; Hosny K.M.Improved Model For Intrusion Detection In The Internet Of ThingsScientific Reports, 15, 1 (2025)
9197 View0.907Janani Pandeeswari G.; Jeyanthi S.Analysis Of Intrusion Detection Using Machine Learning Techniques2nd IEEE International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE 2022 (2022)
36897 View0.903Alamareen A.B.; Al-Mashagbeh M.H.; Abuasal S.; Hussein A.S.Methodology To Improving Iot Network Security With Machine Learning Using The Iot Intrusion DatasetStudies in Systems, Decision and Control, 572 (2025)