Smart City Gnosys

Smart city article details

Title Employing Ai And Ml For Data Analytics On Key Indicators: Enhancing Smart City Urban Services And Dashboard-Driven Leadership And Decision-Making
ID_Doc 22881
Authors Islam M.A.; Sufian M.A.
Year 2023
Published Technology and Talent Strategies for Sustainable Smart Cities: Digital Futures
DOI http://dx.doi.org/10.1108/978-1-83753-022-920231013
Abstract This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The study thoroughly investigated with advanced tools to scrutinize key performance indicators integral to the functioning of smart cities, thereby enhancing leadership and decision-making strategies. Our work involves the implementation of various machine learning models such as Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, and Artificial Neural Networks (ANN), to the data. Notably, the Support Vector Machine and Bernoulli Naive Bayes models exhibit robust performance with an accuracy rate of 70% precision score. In particular, the study underscores the employment of an ANN model on our existing dataset, optimized using the Adam optimizer. Although the model yields an overall accuracy of 61% and a precision score of 58%, implying correct predictions for the positive class 58% of the time, a comprehensive performance assessment using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics was necessary. This evaluation results in a score of 0.475 at a threshold of 0.5, indicating that there's room for model enhancement. These models and their performance metrics serve as a key cog in our data analytics pipeline, providing decision-makers and city leaders with actionable insights that can steer urban service management decisions. Through real-time data availability and intuitive visualization dashboards, these leaders can promptly comprehend the current state of their services, pinpoint areas requiring improvement, and make informed decisions to bolster these services. This research illuminates the potential for data analytics, machine learning, and AI to significantly upgrade urban service management in smart cities, fostering sustainable and livable communities. Moreover, our findings contribute valuable knowledge to other cities aiming to adopt similar strategies, thus aiding the continued development of smart cities globally. © 2023 Md Aminul Islam and Md Abu Sufian.
Author Keywords Dashboard; Data analytics; Decision making; Key indicator; Leadership; Machine learning; Smart city; Sustainability


Similar Articles


Id Similarity Authors Title Published
36039 View0.913Althabahi M.H.; Ahmad Jan M.; Brik B.; Foufou S.Machine Learning-Based Big Data Analytics In Smart Cities: A Survey Of Current Trends And Future Research DirectionsProceedings - 2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2024 (2024)
35869 View0.903Hammoumi L.; Rhinane H.Machine Learning (Ai) For Identifying Smart CitiesInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48, 4/W9-2024 (2024)
35978 View0.903Dou X.; Chen W.; Zhu L.; Bai Y.; Li Y.; Wu X.Machine Learning For Smart Cities: A Comprehensive Review Of Applications And OpportunitiesInternational Journal of Advanced Computer Science and Applications, 14, 9 (2023)
8953 View0.903França R.P.; Monteiro A.C.B.; Arthur R.; Iano Y.An Overview Of The Machine Learning Applied In Smart CitiesLecture Notes in Intelligent Transportation and Infrastructure, Part F1386 (2021)
61761 View0.902Band S.S.; Ardabili S.; Sookhak M.; Chronopoulos A.T.; Elnaffar S.; Moslehpour M.; Csaba M.; Torok B.; Pai H.-T.; Mosavi A.When Smart Cities Get Smarter Via Machine Learning: An In-Depth Literature ReviewIEEE Access, 10 (2022)
35883 View0.901Oladipo I.D.; AbdulRaheem M.; Awotunde J.B.; Bhoi A.K.; Adeniyi E.A.; Abiodun M.K.Machine Learning And Deep Learning Algorithms For Smart Cities: A Start-Of-The-Art ReviewEAI/Springer Innovations in Communication and Computing (2022)
17266 View0.9de Souza J.T.; de Francisco A.C.; Piekarski C.M.; do Prado G.F.Data Mining And Machine Learning To Promote Smart Cities: A Systematic Review From 2000 To 2018Sustainability (Switzerland), 11, 4 (2019)
50152 View0.899Sarker I.H.Smart City Data Science: Towards Data-Driven Smart Cities With Open Research IssuesInternet of Things (Netherlands), 19 (2022)
32035 View0.898Mrabet M.; Sliti M.Integrating Machine Learning For The Sustainable Development Of Smart CitiesFrontiers in Sustainable Cities, 6 (2024)
40125 View0.897Hurbean L.; Danaiata D.; Militaru F.; Dodea A.-M.; Negovan A.-M.Open Data Based Machine Learning Applications In Smart Cities: A Systematic Literature ReviewElectronics (Switzerland), 10, 23 (2021)