Smart City Gnosys

Smart city article details

Title Machine Learning And Deep Learning Algorithms For Smart Cities: A Start-Of-The-Art Review
ID_Doc 35883
Authors Oladipo I.D.; AbdulRaheem M.; Awotunde J.B.; Bhoi A.K.; Adeniyi E.A.; Abiodun M.K.
Year 2022
Published EAI/Springer Innovations in Communication and Computing
DOI http://dx.doi.org/10.1007/978-3-030-82715-1_7
Abstract The development in our urban cities has increased significant risks with everyday lives, like traffic congestion, pollution of the atmosphere, energy use, and public safety among others. Internet of Things (IoT) system has been used to tackle different research issues in a smart city. With the rapid development of IoT technologies, researchers have been motivated to develop smart services that extract knowledge from big data generated from IoT-based devices/sensors. The development of various models like forecast, preparation, monitoring, and ambiguity exploration in smart cities has been enhanced by the applications of deep learning (DL) and machine learning (ML) techniques, and for the urban development. These have also yielded greater results in the process of the huge data and input variables coming from IoT-based cognitive cities. Therefore, this chapter reviews the applicability of the state-of-the-art ML and DL in smart cities’ developments. It also discusses the novel application taxonomy of ML and DL smart cities and environmental planning that includes terms that are used interchangeably. Research shows that urban transportation, energy, and healthcare system are the main areas of applications that ML and DL techniques contributed in addressing their problems. The finding from the reviews reveals that ML and DL methods that are mostly applicable, and used in smart cities and urban development, are decision trees, support vector machine, artificial neural network, Bayesian, neuro-fuzzy, ensembles, and their hybridizations. Due to the complexities of both ML and DL with broad coverage of smart city applications, the study shows that there are various challenges ahead in applying these algorithms for this emerging field. The chapter discusses a range of potential directions related to ML and DL efficacy, evolving frameworks, convergence of information, and protection of privacy hoping that these would take the relevant research one step further to fully develop data analytics for smart cities. © 2022, Springer Nature Switzerland AG.
Author Keywords Artificial intelligence; Cloud computing; Deep learning; Machine learning; Smart cities; Urban development


Similar Articles


Id Similarity Authors Title Published
52939 View0.955Nosratabadi S.; Mosavi A.; Keivani R.; Ardabili S.; Aram F.State Of The Art Survey Of Deep Learning And Machine Learning Models For Smart Cities And Urban SustainabilityLecture Notes in Networks and Systems, 101 (2020)
41666 View0.949Bedi P.; Goyal S.B.; Islam S.M.N.; Liu J.; Budati A.K.Performance Analysis Of Machine Learning And Deep Learning Algorithms For Smart Cities: The Present State And Future DirectionsCognitive Computing Models in Communication Systems (2022)
61761 View0.949Band S.S.; Ardabili S.; Sookhak M.; Chronopoulos A.T.; Elnaffar S.; Moslehpour M.; Csaba M.; Torok B.; Pai H.-T.; Mosavi A.When Smart Cities Get Smarter Via Machine Learning: An In-Depth Literature ReviewIEEE Access, 10 (2022)
10108 View0.948Heidari A.; Navimipour N.J.; Unal M.Applications Of Ml/Dl In The Management Of Smart Cities And Societies Based On New Trends In Information Technologies: A Systematic Literature ReviewSustainable Cities and Society, 85 (2022)
58847 View0.947Sharma A.; Rani S.Transforming Urban Spaces And Industries: The Power Of Machine Learning And Deep Learning In Smart Cities, Smart Industries, And Smart HomesEmerging Technologies and the Application of WSN and IoT: Smart Surveillance, Public Security, and Safety Challenges (2024)
35885 View0.943Sabbharwal S.M.; Aiden M.K.; Chhabra S.Machine Learning And Deep Learning For Smart City ServicesArtificial and Cognitive Computing for Sustainable Healthcare Systems in Smart Cities: Volume 3 (2024)
35978 View0.943Dou X.; Chen W.; Zhu L.; Bai Y.; Li Y.; Wu X.Machine Learning For Smart Cities: A Comprehensive Review Of Applications And OpportunitiesInternational Journal of Advanced Computer Science and Applications, 14, 9 (2023)
44568 View0.94Zanury N.A.; Remli M.A.; Adli H.K.; Wong K.N.S.W.S.Recent Developments Of Deep Learning In Future Smart Cities: A ReviewIntelligent Systems Reference Library, 121 (2022)
8953 View0.937França R.P.; Monteiro A.C.B.; Arthur R.; Iano Y.An Overview Of The Machine Learning Applied In Smart CitiesLecture Notes in Intelligent Transportation and Infrastructure, Part F1386 (2021)
8941 View0.936Shekarappa G. S.; Badi M.; Raj S.; Mahapatra S.An Overview Of Smart City Planning—The Future TechnologyArtificial Intelligence and Machine Learning in Smart City Planning (2023)