Smart City Gnosys

Smart city article details

Title Earl-Light: An Evolutionary Algorithm-Assisted Reinforcement Learning For Traffic Signal Control
ID_Doc 21559
Authors Chen J.-Y.; Wei F.-F.; Chen T.-Y.; Hu X.-M.; Jeon S.-W.; Wang Y.; Chen W.-N.
Year 2024
Published Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
DOI http://dx.doi.org/10.1109/SMC54092.2024.10831906
Abstract Traffic signal control (TSC) problems have received increasing attention with the development of the smart city. Reinforcement learning (RL) models TSC as a Markov decision process and learns the timing relationship of traffic scheduling from massive historical data. Due to the uncertainty and mutability of TSC problems, existing RL methods face bottlenecks in diversity and are easy to be trapped into local optima. To alleviate this predicament, this paper combines evolutionary optimization and RL to propose an evolutionary algorithm-assisted reinforcement learning (EARL-Light) method for TSC problems. EARL-Light is a population-based algorithm, in which one individual represents a policy and a population of individuals are evolved to search for near-optimal policies. The diversified search ability of evolutionary optimization can help the algorithm get rid of local optima for global optimization and the rapid learning based on the gradient of RL can achieve fast convergence. Extensive experiments on seven real-world traffic datasets demonstrates that EARL-Light achieves shorter travel time with fast convergence. © 2024 IEEE.
Author Keywords DDQN; Genetic algorithm; gradient transfer; shared experience


Similar Articles


Id Similarity Authors Title Published
58613 View0.908Paduraru C.; Paduraru M.; Stefanescu A.Traffic Light Control Using Reinforcement Learning: A Survey And An Open Source ImplementationInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings (2022)
25829 View0.902Thamaraiselvi K.; Bohra A.R.; Vishal V.; Sunkara P.S.; Sunku B.; Nityajignesh B.Exploring Traffic Signal Control: A Comprehensive Survey On Reinforcement Learning Techniques3rd IEEE International Conference on Industrial Electronics: Developments and Applications, ICIDeA 2025 (2025)
38103 View0.895Sabit H.Multi-Agent Reinforcement Learning For Smart City Automated Traffic Light ControlProceedings - 2023 IEEE International Conference on High Performance Computing and Communications, Data Science and Systems, Smart City and Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2023 (2023)
57625 View0.891Ait Ouallane A.; Bahnasse A.; Bakali A.; Talea M.Toward A Smart City: Reinforcement Learning For Traffic Light ControlLecture Notes in Networks and Systems, 629 LNNS (2023)
44895 View0.891Barta Z.; Kovács S.; Botzheim J.Reinforcement Learning-Based Cooperative Traffic Control SystemLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14811 LNAI (2024)
38227 View0.89Lam H.C.; Wong R.T.K.; Jasser M.B.; Chua H.N.; Issa B.Multi-Junction Traffic Light Control System With Reinforcement Learning In Sunway Smart City2024 IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2024 - Proceedings (2024)
31510 View0.886Antes T.D.O.; Bazzan A.L.C.; Tavares A.R.Information Upwards, Recommendation Downwards: Reinforcement Learning With Hierarchy For Traffic Signal ControlProcedia Computer Science, 201, C (2022)
40767 View0.885Seifivand S.M.; Asghari P.; Javadi H.H.S.; Nourmohammadi H.Optimizing And Managing The Lighting Time Of The Traffic Light Using The Reinforcement Learning System Based On Fuzzy Logic And Training The System With Evolutionary AlgorithmsInternational Journal of Intelligent Transportation Systems Research (2025)
23735 View0.883Sattarzadeh A.R.; Pathirana P.N.Enhancing Adaptive Traffic Control Systems With Deep Reinforcement Learning And Graphical ModelsProceedings - 2024 IEEE International Conference on Future Machine Learning and Data Science, FMLDS 2024 (2024)
44891 View0.883Hu X.; He Y.Reinforcement Learning-Based Adaptive Optimal Control Model For Signal Light In Intelligent Transportation SystemsJournal of Circuits, Systems and Computers, 34, 2 (2025)