Smart City Gnosys

Smart city article details

Title Reinforcement Learning-Based Adaptive Optimal Control Model For Signal Light In Intelligent Transportation Systems
ID_Doc 44891
Authors Hu X.; He Y.
Year 2025
Published Journal of Circuits, Systems and Computers, 34, 2
DOI http://dx.doi.org/10.1142/S021812662550046X
Abstract Day-to-day mobility among the population has increased with economic growth. Smart cities are renovated with advanced technologies to admire modern life in which intelligent transportation becomes highly focused. Because the traffic signal control systems are fixed at a constant time. They split the traffic signal into predetermined intervals and function inefficiently; they result in long wait times, waste fuel and increased carbon emissions. This research study introduces a novel technique for traffic light management to reduce the uncertainties in the system. A dynamic and intelligent traffic light adaptive optimal management system (DITLAOCS) is implemented in this research. It does this by modifying the traffic signal duration in run time and using real-time traffic data as input. Furthermore, the proposed DITLAOCS executes based on three modes: fairness mode (FM), priority mode (PM) and emergent mode (EM). In fairness mode (FM), all vehicles are prioritized equally, while vehicles in different categories receive varying priority levels. Emergency vehicles, on the other hand, receive the highest priority. Furthermore, a fuzzy inference method based on traffic data is shown to choose one mode out of three (FM, PM and EM). This model uses deep reinforcement learning to switch traffic lights in three different phases (red, green and yellow). We evaluated and accurately simulated DITLAOCS on the Shaanxi city map in China using Simulation of Urban MObility (SUMO), an open-source simulator. The simulation results illustrate the efficiency of DITLAOCS when compared to other cutting-edge algorithms on several performance measures. © 2025 World Scientific Publishing Company.
Author Keywords deep learning; dynamic traffic light control; ideal management fuzzy logic; intelligent traffic signal system (ITS); Reinforcement learning


Similar Articles


Id Similarity Authors Title Published
40767 View0.925Seifivand S.M.; Asghari P.; Javadi H.H.S.; Nourmohammadi H.Optimizing And Managing The Lighting Time Of The Traffic Light Using The Reinforcement Learning System Based On Fuzzy Logic And Training The System With Evolutionary AlgorithmsInternational Journal of Intelligent Transportation Systems Research (2025)
58613 View0.919Paduraru C.; Paduraru M.; Stefanescu A.Traffic Light Control Using Reinforcement Learning: A Survey And An Open Source ImplementationInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings (2022)
57625 View0.919Ait Ouallane A.; Bahnasse A.; Bakali A.; Talea M.Toward A Smart City: Reinforcement Learning For Traffic Light ControlLecture Notes in Networks and Systems, 629 LNNS (2023)
32611 View0.912Zhu Y.; Cai M.; Schwarz C.W.; Li J.; Xiao S.Intelligent Traffic Light Via Policy-Based Deep Reinforcement LearningInternational Journal of Intelligent Transportation Systems Research, 20, 3 (2022)
6356 View0.911Kumar R.; Sharma N.V.K.; Chaurasiya V.K.Adaptive Traffic Light Control Using Deep Reinforcement Learning TechniqueMultimedia Tools and Applications, 83, 5 (2024)
29723 View0.902Faqir N.; Ennaji Y.; Chakir L.; Boumhidi J.Hybrid Cnn-Lstm And Proximal Policy Optimization Model For Traffic Light Control In A Multi-Agent EnvironmentIEEE Access, 13 (2025)
38227 View0.901Lam H.C.; Wong R.T.K.; Jasser M.B.; Chua H.N.; Issa B.Multi-Junction Traffic Light Control System With Reinforcement Learning In Sunway Smart City2024 IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2024 - Proceedings (2024)
23735 View0.898Sattarzadeh A.R.; Pathirana P.N.Enhancing Adaptive Traffic Control Systems With Deep Reinforcement Learning And Graphical ModelsProceedings - 2024 IEEE International Conference on Future Machine Learning and Data Science, FMLDS 2024 (2024)
44882 View0.896Bohra A.R.; Selvi T.; Vishal V.; Sunkara P.S.; Sunku B.; Jignesh B.N.Reinforcement Learning For Adaptive Traffic Signal Control Using Deep Q-Networks1st International Conference on Sustainable Energy Technologies and Computational Intelligence: Towards Sustainable Energy Transition, SETCOM 2025 (2025)
6368 View0.895Dong Y.; Huang H.; Zhang G.; Jin J.Adaptive Transit Signal Priority Control For Traffic Safety And Efficiency Optimization: A Multi-Objective Deep Reinforcement Learning FrameworkMathematics, 12, 24 (2024)