23480  | 0.895 | Tan C.; Yu P.; Qu Z.; Zhang L.; Li W.; Qiu X.; Guo S. | Energy-Efficient Federated Learning Training Optimization For Digital Twin Driven 6G Air-Ground Integrated Vehicular Networks | IEEE Transactions on Intelligent Transportation Systems (2025) |
31995  | 0.892 | Mancini L.; Labbi S.; Meraim K.A.; Boukhalfa F.; Durmus A.; Mangold P.; Moulines E. | Integrating Feddrl For Efficient Vehicular Communication In Smart Cities | Lecture Notes in Intelligent Transportation and Infrastructure, Part F99 (2025) |
32466  | 0.892 | Wu Y.; Fang X.; Min G.; Chen H.; Luo C. | Intelligent Offloading Balance For Vehicular Edge Computing And Networks | IEEE Transactions on Intelligent Transportation Systems, 26, 5 (2025) |
5420  | 0.89 | Al-Najjar A.N.; Rasid M.F.A.; Hashim F.; Ahmad F.A.; Jamalipour A. | A Systematic Literature Review In Distributed Resource Allocation For C-V2X | Ingenierie des Systemes d'Information, 29, 3 (2024) |
11738  | 0.89 | Ye J.; Ge X. | Beam Management Optimization For V2V Communications Based On Deep Reinforcement Learning | Scientific Reports, 13, 1 (2023) |
5315  | 0.887 | Noor-A-Rahim M.; Liu Z.; Lee H.; Ali G.G.M.N.; Pesch D.; Xiao P. | A Survey On Resource Allocation In Vehicular Networks | IEEE Transactions on Intelligent Transportation Systems, 23, 2 (2022) |
43045  | 0.882 | Shakir A.T.; Masini B.M.; Khudhair N.R.; Nordin R.; Amphawan A. | Priority-Aware Multi-Agent Deep Reinforcement Learning For Resource Scheduling In C-V2X Mode 4 Communication | IEEE Access (2025) |
18051  | 0.875 | Agbaje P.; Nwafor E.; Olufowobi H. | Deep Reinforcement Learning For Energy-Efficient Task Offloading In Cooperative Vehicular Edge Networks | IEEE International Conference on Industrial Informatics (INDIN), 2023-July (2023) |
4083  | 0.871 | Hong S.; Kim J.; Kim G.; Cho S. | A Research Trends Of Reinforcement Learning Algorithms For C-V2X Network Resource Allocation | International Conference on Ubiquitous and Future Networks, ICUFN (2024) |
54442  | 0.867 | Zhao X.; Liu M.; Li M. | Task Offloading Strategy And Scheduling Optimization For Internet Of Vehicles Based On Deep Reinforcement Learning | Ad Hoc Networks, 147 (2023) |