Smart City Gnosys

Smart city article details

Title A Heterogeneous Traffic Spatio-Temporal Graph Convolution Model For Traffic Prediction
ID_Doc 2033
Authors Xu J.; Li Y.; Lu W.; Wu S.; Li Y.
Year 2024
Published Physica A: Statistical Mechanics and its Applications, 641
DOI http://dx.doi.org/10.1016/j.physa.2024.129746
Abstract Smart cities require advanced traffic management systems. Traffic forecasting is an essential task of the advanced transportation system. Traffic spatio-temporal data are often heterogeneous. Most existing traffic prediction models predominantly use separate components to extract the temporal and spatial features of traffic data. However, this overlooks the intrinsic connections between the spatio-temporal features of traffic data. To directly mine the spatio-temporal heterogeneity, this study constructs a global heterogeneous traffic spatio-temporal graph and proposes the Heterogeneous Traffic Spatio-Temporal Graph Convolution (HTSTGC). To reduce the complexity of the model, Simple Graph Convolution (SGC) is used to extract semi-structured meta-graph information. The receptive fields that capture temporal and spatial features can be flexibly adjusted separately through clever design, which can balance the performance and efficiency of the model. Finally, the feature fusion module applies Gated Graph Neural Network (GGNN) to fuse temporal and spatial features. The results on the PEMS datasets reveal that jointly modeling different types of relationships can improve the traffic prediction performance of the model. The proposed HTSTGC has better performance than the baseline methods in most cases. The research results can support urban traffic control, traffic pollution reduction, and sustainable urban development. © 2024 Elsevier B.V.
Author Keywords Graph convolution network; Heterogeneous graph; Intelligent transportation systems; Smart city; Spatio-temporal heterogeneity; Traffic flow prediction


Similar Articles


Id Similarity Authors Title Published
28936 View0.954Mao H.; Sun Z.; Qin N.Heterogeneous Augmentation Based Spatio-Temporal Graph Convolutional Network For Traffic ForecastingProceedings of the International Joint Conference on Neural Networks (2024)
53044 View0.939Meng X.; Xie W.; Cui J.Stmgfn: Spatio-Temporal Multi-Graph Fusion Network For Traffic Flow PredictionLecture Notes in Computer Science, 15291 LNCS (2025)
36944 View0.938Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)
34723 View0.938Zhou J.; Shuai S.; Wang L.; Yu K.; Kong X.; Xu Z.; Shao Z.Lane-Level Traffic Flow Prediction With Heterogeneous Data And Dynamic GraphsApplied Sciences (Switzerland), 12, 11 (2022)
34722 View0.933Wang L.; Shen G.; Yu K.; Ji Z.; Kong X.Lane-Level Traffic Flow Prediction Based On Dynamic Graph Generation2021 IEEE 23rd International Conference on High Performance Computing and Communications, 7th International Conference on Data Science and Systems, 19th International Conference on Smart City and 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021 (2022)
29828 View0.93Dai R.; Xu S.; Gu Q.; Ji C.; Liu K.Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction With Navigation DataProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
21123 View0.928Hu J.; Lin X.; Wang C.Dstgcn: Dynamic Spatial-Temporal Graph Convolutional Network For Traffic PredictionIEEE Sensors Journal, 22, 13 (2022)
20800 View0.926Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
3380 View0.926Hussain B.; Afzal M.K.; Anjum S.; Rao I.; Kim B.-S.A Novel Graph Convolutional Gated Recurrent Unit Framework For Network-Based Traffic PredictionIEEE Access, 11 (2023)
29827 View0.925Chen B.; Hu K.; Li Y.; Miao L.Hybrid Spatio-Temporal Graph Convolution Network For Short-Term Traffic ForecastingIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2022-October (2022)