Smart City Gnosys

Smart city article details

Title Digital Twins For Streamlining Road-Traffic Flow
ID_Doc 20292
Authors Fujishima M.; Takagi M.; Yokoya M.; Nakada R.
Year 2023
Published NTT Technical Review, 21, 4
DOI http://dx.doi.org/10.53829/ntr202304fa4
Abstract We are studying the use of digital twins to optimize traffic flow so that traffic congestion will not occur. To reproduce current real-world traffic flow and predict future traffic flow using digital twins requires traffic-demand data with fine granularity in time and space. Due to recent increasing activity to create smart cities, we can now obtain cross-sectional traffic-volume data for short time intervals of five minutes, but such measurements are still only being taken at a relatively small number of locations, so spatial granularity is large. In this article, we introduce our OD (origin-destination)-estimation technology that uses cross-sectional traffic volume on arterial roads to interpolate such fragmented cross-sectional traffic data to generate realistic traffic-demand data. © 2023 Nippon Telegraph and Telephone Corp.. All rights reserved.
Author Keywords digital twin; Exploring Engine for the Future Society; traffic-flow simulation


Similar Articles


Id Similarity Authors Title Published
20296 View0.885Anniciello A.; Fioretto S.; Masciari E.; Napolitano E.V.Digital Twins For Traffic Congestion In Smart Cities: A Novel Solution Using Data Mining TechniquesInternational Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K - Proceedings, 3 (2023)
20250 View0.882Pawar A.B.; Khan S.A.; Baker El-Ebiary Y.A.; Burugari V.K.; Abdufattokhov S.; Saravanan A.; Ghodhbani R.Digital Twin-Based Predictive Analytics For Urban Traffic Optimization And Smart Infrastructure ManagementInternational Journal of Advanced Computer Science and Applications, 16, 5 (2025)
50559 View0.878Vlahakis V.; Protopsaltis A.; Sarigiannidis P.Smart City Traffic Monitoring Using Digital Twin TechnologyAIP Conference Proceedings, 2909, 1 (2023)
21127 View0.875Wu B.; Zhang J.; Yuan J.; Zeng Y.; Zhan P.; Yin Y.; Wan J.; Gao H.Dt-Ctfp: 6G-Enabled Digital Twin Collaborative Traffic Flow PredictionIEEE Transactions on Intelligent Transportation Systems (2025)
31599 View0.871Perna M.; Pinto B.; Mendes J.; Dias R.; Obrist F.; Rito P.; Sargento S.; Raposo D.; Pinto F.Innovating Urban Mobility With Digital Twins: Data-Driven Traffic Visualization And TestingIEEE Wireless Communications and Networking Conference, WCNC (2025)
7456 View0.87Herath M.; Dutta H.; Minerva R.; Crespi N.; Alvi M.; Raza S.M.An Ai-Driven, Scalable, And Modular Digital Twin Framework For Traffic ManagementIEEE Wireless Communications and Networking Conference, WCNC (2025)
2192 View0.868Puri B.; Solanki V.K.; Kaur M.; Puri V.A Hybrid Ml-Digital Twin Approach For Urban Traffic Optimization2024 IEEE Region 10 Symposium, TENSYMP 2024 (2024)
58538 View0.862Li Y.; Wang H.; Buckles B.Traffic Congestion Assessment Based On Street Level Data For On-Edge DeploymentProceedings of the 4th ACM/IEEE Symposium on Edge Computing, SEC 2019 (2019)
57604 View0.858Ngadi H.; Bounceur A.; Bezoui M.; Lahlou L.; Hammoudeh M.; Nadjia K.; Nana L.Toward A Digital Twin Iot For The Validation Of Ai Algorithms In Smart-City ApplicationsLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14525 LNCS (2024)
30500 View0.856Kamioka S.; Yamazaki T.; Miyoshi T.Implementation And Evaluation Of Digital Twin Using Lidar And 3D City Models2025 1st International Conference on Consumer Technology, ICCT-Pacific 2025 (2025)