38095  | 0.88 | Dhuheir M.; Erbad A.; Hamdaoui B.; Belhaouari S.B.; Guizani M.; Vu T.X. | Multi-Agent Meta Reinforcement Learning For Reliable And Low-Latency Distributed Inference In Resource-Constrained Uav Swarms | IEEE Access, 13 (2025) |
10536  | 0.876 | Thakur N.; Nagrath P.; Jain R.; Saini D.; Sharma N.; Hemanth D.J. | Artificial Intelligence Techniques In Smart Cities Surveillance Using Uavs: A Survey | Studies in Computational Intelligence, 971 (2021) |
40081  | 0.873 | Alenezi A. | Online Surveillance Of Iot Agents In Smart Cities Using Deep Reinforcement Learning | International Journal of Intelligent Information Technologies, 20, 1 (2024) |
5700  | 0.871 | Oubbati O.S.; Alotaibi J.; Alromithy F.; Atiquzzaman M.; Altimania M.R. | A Uav-Ugv Cooperative System: Patrolling And Energy Management For Urban Monitoring | IEEE Transactions on Vehicular Technology (2025) |
57941  | 0.86 | Jain R.; Nagrath P.; Thakur N.; Saini D.; Sharma N.; Hemanth D.J. | Towards A Smarter Surveillance Solution: The Convergence Of Smart City And Energy Efficient Unmanned Aerial Vehicle Technologies | Studies in Systems, Decision and Control, 332 (2021) |
1129  | 0.858 | Liu X.; Wang Y.; Gao H.; Ngai E.C.H.; Zhang B.; Wang C.; Wang W. | A Coverage-Aware Task Allocation Method For Uav-Assisted Mobile Crowd Sensing | IEEE Transactions on Vehicular Technology, 73, 7 (2024) |
2337  | 0.855 | Xi M.; Dai H.; He J.; Li W.; Wen J.; Xiao S.; Yang J. | A Lightweight Reinforcement-Learning-Based Real-Time Path-Planning Method For Unmanned Aerial Vehicles | IEEE Internet of Things Journal, 11, 12 (2024) |
11445  | 0.853 | Yun W.J.; Ha Y.J.; Jung S.; Kim J. | Autonomous Aerial Mobility Learning For Drone-Taxi Flight Control | International Conference on ICT Convergence, 2021-October (2021) |
9695  | 0.853 | Chen S.; Wei K.; Pei T.; Long S. | Aoi-Guaranteed Uav Crowdsensing: A Ugv-Assisted Deep Reinforcement Learning Approach | Ad Hoc Networks, 173 (2025) |
58717  | 0.851 | Tao X.; Hafid A.S. | Trajectory Design In Uav-Aided Mobile Crowdsensing: A Deep Reinforcement Learning Approach | IEEE International Conference on Communications (2021) |