Smart City Gnosys

Smart city article details

Title Combining Machine Learning And Edge Computing: Opportunities, Challenges, Platforms, Frameworks, And Use Cases
ID_Doc 14842
Authors Grzesik P.; Mrozek D.
Year 2024
Published Electronics (Switzerland), 13, 3
DOI http://dx.doi.org/10.3390/electronics13030640
Abstract In recent years, we have been observing the rapid growth and adoption of IoT-based systems, enhancing multiple areas of our lives. Concurrently, the utilization of machine learning techniques has surged, often for similar use cases as those seen in IoT systems. In this survey, we aim to focus on the combination of machine learning and the edge computing paradigm. The presented research commences with the topic of edge computing, its benefits, such as reduced data transmission, improved scalability, and reduced latency, as well as the challenges associated with this computing paradigm, like energy consumption, constrained devices, security, and device fleet management. It then presents the motivations behind the combination of machine learning and edge computing, such as the availability of more powerful edge devices, improving data privacy, reducing latency, or lowering reliance on centralized services. Then, it describes several edge computing platforms, with a focus on their capability to enable edge intelligence workflows. It also reviews the currently available edge intelligence frameworks and libraries, such as TensorFlow Lite or PyTorch Mobile. Afterward, the paper focuses on the existing use cases for edge intelligence in areas like industrial applications, healthcare applications, smart cities, environmental monitoring, or autonomous vehicles. © 2024 by the authors.
Author Keywords edge computing; healthcare; Internet of Things; machine learning; predictive maintenance; smart cities


Similar Articles


Id Similarity Authors Title Published
5251 View0.928Hoffpauir K.; Simmons J.; Schmidt N.; Pittala R.; Briggs I.; Makani S.; Jararweh Y.A Survey On Edge Intelligence And Lightweight Machine Learning Support For Future Applications And ServicesJournal of Data and Information Quality, 15, 2 (2023)
22927 View0.917Nizam M.K.; Goyal S.B.; Verma C.; Illés Z.Empowering Smart Cities With Edge Computing-Based Iot Systems: A Focus On Data Analytics And Machine Learning TechniquesLecture Notes in Electrical Engineering, 1194 (2024)
21815 View0.91Murthy V.S.N.; Kumari R.; Goyal M.; Dubey P.; Meenakshi; Manikandan S.; Ramesh P.Edge-Ai In Iot: Leveraging Cloud Computing And Big Data For Intelligent Decision-MakingJournal of Information Systems Engineering and Management, 10 (2025)
21763 View0.903Alnoman A.Edge Computing Services For Smart Cities: A Review And Case Study2021 International Symposium on Networks, Computers and Communications, ISNCC 2021 (2021)
57735 View0.901Zaid M.A.; Faizal M.; Maheswar R.; Abdullaziz O.I.Toward Smart Urban Development Through Intelligent Edge AnalyticsEAI/Springer Innovations in Communication and Computing (2020)
21762 View0.9Chandrasekaran S.; Athinarayanan S.; Masthan M.; Kakkar A.; Bhatnagar P.; Samad A.Edge Computing Revolution: Unleashing Artificial Intelligence Potential In The World Of Edge IntelligenceEdge of Intelligence: Exploring the Frontiers of AI at the Edge (2025)
8433 View0.897Udayakumar R.; Mahesh B.; Sathiyakala R.; Thandapani K.; Choubey A.; Khurramov A.; Alzubaidi L.H.; Sravanthi J.An Integrated Deep Learning And Edge Computing Framework For Intelligent Energy Management In Iot-Based Smart CitiesInternational Conference for Technological Engineering and its Applications in Sustainable Development, ICTEASD 2023 (2023)
21849 View0.895Sulieman N.A.; Celsi L.R.; Li W.; Zomaya A.; Villari M.Edge-Oriented Computing: A Survey On Research And Use CasesEnergies, 15, 2 (2022)
55982 View0.895Hasan M.M.; Sultana T.; Hossain M.D.; Mandal A.K.; Ngo T.-T.; Lee G.-W.; Huh E.-N.The Journey To Cloud As A Continuum: Opportunities, Challenges, And Research DirectionsICT Express (2025)
36075 View0.895Bzai J.; Alam F.; Dhafer A.; Bojović M.; Altowaijri S.M.; Niazi I.K.; Mehmood R.Machine Learning-Enabled Internet Of Things (Iot): Data, Applications, And Industry PerspectiveElectronics (Switzerland), 11, 17 (2022)