Smart City Gnosys

Smart city article details

Title Anomaly Detection Using Machine Learning To Discover Sensor Tampering In Iot Systems
ID_Doc 9640
Authors Pathak A.K.; Saguna S.; Mitra K.; Ahlund C.
Year 2021
Published IEEE International Conference on Communications
DOI http://dx.doi.org/10.1109/ICC42927.2021.9500825
Abstract With the rapid growth of the Internet of Things (IoT) applications in smart regions/cities, for example, smart healthcare, smart homes/offices, there is an increase in security threats and risks. The IoT devices solve real-world problems by providing real-time connections, data and information. Besides this, the attackers can tamper with sensors, add or remove them physically or remotely. In this study, we address the IoT security sensor tampering issue in an office environment. We collect data from real-life settings and apply machine learning to detect sensor tampering using two methods. First, a real-time view of the traffic patterns is considered to train our isolation forest-based unsupervised machine learning method for anomaly detection. Second, based on traffic patterns, labels are created, and the decision tree supervised method is used, within our novel Anomaly Detection using Machine Learning (AD-ML) system. The accuracy of the two proposed models is presented. We found 84% with silhouette metric accuracy of isolation forest. Moreover, the result based on 10 cross-validations for decision trees on the supervised machine learning model returned the highest classification accuracy of 91.62% with the lowest false positive rate. © 2021 IEEE.
Author Keywords anomaly detection; Internet of Things; machine learning; security; sensor tampering; smart city; traffic analysis


Similar Articles


Id Similarity Authors Title Published
6153 View0.91Alrashdi I.; Alqazzaz A.; Aloufi E.; Alharthi R.; Zohdy M.; Ming H.Ad-Iot: Anomaly Detection Of Iot Cyberattacks In Smart City Using Machine Learning2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019 (2019)
9646 View0.907Maniriho P.; Niyigaba E.; Bizimana Z.; Twiringiyimana V.; Mahoro L.J.; Ahmad T.Anomaly-Based Intrusion Detection Approach For Iot Networks Using Machine LearningCENIM 2020 - Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020 (2020)
19918 View0.905Garcia-Font, V; Garrigues, C; Rifà-Pous, HDifficulties And Challenges Of Anomaly Detection In Smart Cities: A Laboratory AnalysisSENSORS, 18, 10 (2018)
47766 View0.904Plazas Olaya M.K.; Vergara Tejada J.A.; Aedo Cobo J.E.Securing Microservices-Based Iot Networks: Real-Time Anomaly Detection Using Machine LearningJournal of Computer Networks and Communications, 2024 (2024)
28563 View0.9Ansari L.Guarding The Future: Anomaly Detection In Iot-Enabled Smart CitiesLecture Notes in Networks and Systems, 1110 LNNS (2024)
36913 View0.899Girubagari N.; Ravi T.N.Methods Of Anomaly Detection For The Prevention And Detection Of Cyber AttacksInternational Journal of Intelligent Engineering Informatics, 11, 4 (2024)
9197 View0.895Janani Pandeeswari G.; Jeyanthi S.Analysis Of Intrusion Detection Using Machine Learning Techniques2nd IEEE International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE 2022 (2022)
35873 View0.889Kumar V.S.; Sunehra D.Machine Learning Algorithms For Binary And Multiclass Classification Of Iot Network Traffic In Smart Cities2024 3rd International Conference on Artificial Intelligence for Internet of Things, AIIoT 2024 (2024)
33346 View0.889Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
6519 View0.888Mishra D.; Naik B.; Bhoi G.Advanced Machine Learning Approach For Designing Intelligent System For Iot Security FrameworkStudies in Computational Intelligence, 1167 (2024)