Smart City Gnosys

Smart city article details

Title Adversarial Training For Deep Learning-Based Cyberattack Detection In Iot-Based Smart City Applications
ID_Doc 6741
Authors Rashid M.M.; Kamruzzaman J.; Mehedi Hassan M.; Imam T.; Wibowo S.; Gordon S.; Fortino G.
Year 2022
Published Computers and Security, 120
DOI http://dx.doi.org/10.1016/j.cose.2022.102783
Abstract Intrusion Detection Systems (IDS) based on deep learning models can identify and mitigate cyberattacks in IoT applications in a resilient and systematic manner. These models, which support the IDS's decision, could be vulnerable to a cyberattack known as adversarial attack. In this type of attack, attackers create adversarial samples by introducing small perturbations to attack samples to trick a trained model into misclassifying them as benign applications. These attacks can cause substantial damage to IoT-based smart city models in terms of device malfunction, data leakage, operational outage and financial loss. To our knowledge, the impact of and defence against adversarial attacks on IDS models in relation to smart city applications have not been investigated yet. To address this research gap, in this work, we explore the effect of adversarial attacks on the deep learning and shallow machine learning models by using a recent IoT dataset and propose a method using adversarial retraining that can significantly improve IDS performance when confronting adversarial attacks. Simulation results demonstrate that the presence of adversarial samples deteriorates the detection accuracy significantly by above 70% while our proposed model can deliver detection accuracy above 99% against all types of attacks including adversarial attacks. This makes an IDS robust in protecting IoT-based smart city services.(c) 2022 Elsevier Ltd. All rights reserved.
Author Keywords Cyberattacks; Deep learning; Internet of things; Machine learning; Retraining; Smart city


Similar Articles


Id Similarity Authors Title Published
29764 View0.948Bose S.; Maheswaran N.; Gokulraj G.; Anitha T.; Shruthi T.; Vijayaraj G.Hybrid Intrusion Detection System For Iot Against Adversarial Threats Using Intelligent Rdls ModelProceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics, ICDICI 2024 (2024)
1446 View0.911Rakha M.A.; Akbar A.; Chhabra G.; Kaushik K.; Arshi O.; Khan I.U.A Detailed Comparative Study Of Ai-Based Intrusion Detection System For Smart CitiesProceedings of International Conference on Communication, Computer Sciences and Engineering, IC3SE 2024 (2024)
23626 View0.905Hazman C.; Guezzaz A.; Benkirane S.; Azrour M.Enhanced Ids With Deep Learning For Iot-Based Smart Cities SecurityTsinghua Science and Technology, 29, 4 (2024)
17981 View0.903Himdi T.; Ishaque M.Deep Learning-Enhanced Anomaly Detection For Iot Security In Smart CitiesARPN Journal of Engineering and Applied Sciences, 19, 6 (2024)
7014 View0.902Reis M.J.C.S.Ai-Driven Anomaly Detection For Securing Iot Devices In 5G-Enabled Smart CitiesElectronics (Switzerland), 14, 12 (2025)
6993 View0.9Alhamdi M.J.M.; Lopez-Guede J.M.; AlQaryouti J.; Rahebi J.; Zulueta E.; Fernandez-Gamiz U.Ai-Based Malware Detection In Iot Networks Within Smart Cities: A SurveyComputer Communications, 233 (2025)
957 View0.898Houichi M.; Jaidi F.; Bouhoula A.A Comprehensive Study Of Intrusion Detection Within Internet Of Things-Based Smart Cities: Synthesis, Analysis And A Novel Approach2023 International Wireless Communications and Mobile Computing, IWCMC 2023 (2023)
1335 View0.892Kolhar M.; Aldossary S.M.A Deep Learning Approach For Securing Iot Infrastructure With Emphasis On Smart Vertical NetworksDesigns, 7, 6 (2023)
9648 View0.892Alsoufi M.A.; Razak S.; Siraj M.M.; Nafea I.; Ghaleb F.A.; Saeed F.; Nasser M.Anomaly-Based Intrusion Detection Systems In Iot Using Deep Learning: A Systematic Literature ReviewApplied Sciences (Switzerland), 11, 18 (2021)
6670 View0.89Zhukabayeva T.; Benkhelifa E.; Satybaldina D.; Rehman A.U.Advancing Iot Security: A Review Of Intrusion Detection Systems Challenges And Emerging Solutions2024 11th International Conference on Software Defined Systems, SDS 2024 (2024)