Smart City Gnosys

Smart city article details

Title Time-Series Data-Driven Pm2.5 Forecasting: From Theoretical Framework To Empirical Analysis
ID_Doc 57442
Authors Wu C.; Wang R.; Lu S.; Tian J.; Yin L.; Wang L.; Zheng W.
Year 2025
Published Atmosphere, 16, 3
DOI http://dx.doi.org/10.3390/atmos16030292
Abstract PM2.5 in air pollution poses a significant threat to public health and the ecological environment. There is an urgent need to develop accurate PM2.5 prediction models to support decision-making and reduce risks. This review comprehensively explores the progress of PM2.5 concentration prediction, covering bibliometric trends, time series data characteristics, deep learning applications, and future development directions. This article obtained data on 2327 journal articles published from 2014 to 2024 from the WOS database. Bibliometric analysis shows that research output is growing rapidly, with China and the United States playing a leading role, and recent research is increasingly focusing on data-driven methods such as deep learning. Key data sources include ground monitoring, meteorological observations, remote sensing, and socioeconomic activity data. Deep learning models (including CNN, RNN, LSTM, and Transformer) perform well in capturing complex temporal dependencies. With its self-attention mechanism and parallel processing capabilities, Transformer is particularly outstanding in addressing the challenges of long sequence modeling. Despite these advances, challenges such as data integration, model interpretability, and computational cost remain. Emerging technologies such as meta-learning, graph neural networks, and multi-scale modeling offer promising solutions while integrating prediction models into real-world applications such as smart city systems can enhance practical impact. This review provides an informative guide for researchers and novices, providing an understanding of cutting-edge methods, practical applications, and systematic learning paths. It aims to promote the development of robust and efficient prediction models to contribute to global air pollution management and public health protection efforts. © 2025 by the authors.
Author Keywords bibliometric analysis; deep learning; LSTM; PM<sub>2.5</sub>; time-series; transformer


Similar Articles


Id Similarity Authors Title Published
37690 View0.906Pereira L.; Tamilselvi P.Modelling Of Fusion Artificial Neural Networks For Assessment Of Air Pollution In Smart City EnvironmentProceedings of International Conference on Circuit Power and Computing Technologies, ICCPCT 2024 (2024)
17922 View0.905Priscila S.S.; Jayanthiladevi A.Deep Learning Technologies For The Assessment Of Air Pollution Level Systems In Smart CitiesInternational Journal of System of Systems Engineering, 13, 4 (2023)
51437 View0.903Chang-Silva R.; Tariq S.; Loy-Benitez J.; Yoo C.Smart Solutions For Urban Health Risk Assessment: A Pm2.5 Monitoring System Incorporating Spatiotemporal Long-Short Term Graph Convolutional NetworkChemosphere, 335 (2023)
17763 View0.9Liu Y.Deep Aggregation Seq2Seq Network With Time Feature Fusion For Air Pollutant Concentration Prediction In Smart CitiesEngineering Reports, 7, 2 (2025)
42245 View0.898Faydi M.; Zrelli A.; Ezzedine T.Pm2.5 Prediction Using Deep Learning Models17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 - Proceedings (2023)
7133 View0.898Rath S.; Maneesha P.Air Pollution Forecasting Using Machine Learning With Temporal Fusion Transformer And Graph Neural Networks3rd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2025 (2025)
50861 View0.893Faydi M.; Zrelli A.; Ezzedine T.Smart Environment Monitoring Systems For Pm2.5 Prediction Using Deep Learning Models In Smart City2023 International Symposium on Networks, Computers and Communications, ISNCC 2023 (2023)
2535 View0.893Zhang Z.; Ma X.; Johansson C.; Jin J.; Engardt M.A Meta-Graph Deep Learning Framework For Forecasting Air Pollutants In Stockholm2023 IEEE World Forum on Internet of Things: The Blue Planet: A Marriage of Sea and Space, WF-IoT 2023 (2023)
42864 View0.893Varde A.S.; Pandey A.; Du X.Prediction Tool On Fine Particle Pollutants And Air Quality For Environmental EngineeringSN Computer Science, 3, 3 (2022)
22959 View0.885Vanitha M.; Narasimhan D.Empowering Urban Planning With Accurate Air Quality Index Prediction: Hybrid Learning Models For Smart CitiesDeep Learning and Blockchain Technology for Smart and Sustainable Cities (2025)