17029  | 0.942 | Protic D.; Gaur L.; Stankovic M.; Rahman M.A. | Cybersecurity In Smart Cities: Detection Of Opposing Decisions On Anomalies In The Computer Network Behavior | Electronics (Switzerland), 11, 22 (2022) |
13293  | 0.887 | Khan J.; Elfakharany R.; Saleem H.; Pathan M.; Shahzad E.; Dhou S.; Aloul F. | Can Machine Learning Enhance Intrusion Detection To Safeguard Smart City Networks From Multi-Step Cyberattacks? | Smart Cities, 8, 1 (2025) |
55376  | 0.878 | Čech P.; Ponce D.; Mikulecký P.; Žváčková A.; Mls K.; Otčenášková T.; Tučník P. | The Effect Of Generating Synthetic Data In Smart City Network Systems | SN Computer Science, 6, 2 (2025) |
36913  | 0.872 | Girubagari N.; Ravi T.N. | Methods Of Anomaly Detection For The Prevention And Detection Of Cyber Attacks | International Journal of Intelligent Engineering Informatics, 11, 4 (2024) |
36055  | 0.871 | Ngo V.-D.; Vuong T.-C.; Van Luong T.; Tran H. | Machine Learning-Based Intrusion Detection: Feature Selection Versus Feature Extraction | Cluster Computing, 27, 3 (2024) |
58081  | 0.87 | Sangaiah A.K.; Javadpour A.; Pinto P. | Towards Data Security Assessments Using An Ids Security Model For Cyber-Physical Smart Cities | Information Sciences, 648 (2023) |
814  | 0.867 | Basheer L.; Ranjana P. | A Comparative Study Of Various Intrusion Detections In Smart Cities Using Machine Learning | 2022 International Conference on IoT and Blockchain Technology, ICIBT 2022 (2022) |
19918  | 0.866 | Garcia-Font, V; Garrigues, C; Rifà-Pous, H | Difficulties And Challenges Of Anomaly Detection In Smart Cities: A Laboratory Analysis | SENSORS, 18, 10 (2018) |
2187  | 0.864 | Gill K.S.; Dhillon A. | A Hybrid Machine Learning Framework For Intrusion Detection System In Smart Cities | Evolving Systems, 15, 6 (2024) |
2483  | 0.863 | Nepolo E.; Ngxande M.; Zodi G.-A.L. | A Machine Learning-Based Performance Analysis Of Feature Selection Methods For Anomaly Detection For Iot Network Security | Learning and Analytics in Intelligent Systems, 43 (2025) |