1241  | 0.861 | Casali Y.; Aydin N.Y.; Comes T. | A Data-Driven Approach To Analyse The Co-Evolution Of Urban Systems Through A Resilience Lens: A Helsinki Case Study | Environment and Planning B: Urban Analytics and City Science, 51, 9 (2024) |
1245  | 0.859 | Bittencourt J.C.N.; Costa D.G.; Portugal P.; Vasques F. | A Data-Driven Clustering Approach For Assessing Spatiotemporal Vulnerability To Urban Emergencies | Sustainable Cities and Society, 108 (2024) |
60533  | 0.859 | Brelsford C.; Thakur G.; Arthur R.; Williams H. | Using Digital Trace Data To Identify Regions And Cities | Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities, ARIC 2019 (2019) |
24071  | 0.857 | Gkontzis A.F.; Kotsiantis S.; Feretzakis G.; Verykios V.S. | Enhancing Urban Resilience: Smart City Data Analyses, Forecasts, And Digital Twin Techniques At The Neighborhood Level | Future Internet, 16, 2 (2024) |
10810  | 0.856 | Mutambik I. | Assessing Urban Vulnerability To Emergencies: A Spatiotemporal Approach Using K-Means Clustering | Land, 13, 11 (2024) |
51970  | 0.855 | Nolasco-Cirugeda A.; García-Mayor C. | Social Dynamics In Cities: Analysis Through Lbsn Data | Procedia Computer Science, 207 (2022) |
39930  | 0.853 | Bittencourt J.C.N.; Costa D.G.; Portugal P.; Peixoto M.L.M.; Vasques F. | On The Spatiotemporal Knowledge-Driven Vulnerability Assessment Of Urban Areas: A Clustering-Based Approach | International Journal of Disaster Risk Reduction, 127 (2025) |