Smart City Gnosys

Smart city article details

Title Teg: Temporal-Granularity Method For Anomaly Detection With Attention In Smart City Surveillance
ID_Doc 54663
Authors Akdag E.; Bondarev E.; De With P.H.N.
Year 2024
Published 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024
DOI http://dx.doi.org/10.1109/VCIP63160.2024.10849819
Abstract Anomaly detection in video surveillance has recently gained interest from the research community. Temporal duration of anomalies vary within video streams, leading to complications in learning the temporal dynamics of specific events. This paper presents a temporal-granularity method for an anomaly detection model (TeG) in real-world surveillance, combining spatio-temporal features at different time-scales. The TeG model employs multi-head cross-attention (MCA) blocks and multi-head self-attention (MSA) blocks for this purpose. Additionally, we extend the UCF-Crime dataset with new anomaly types relevant to Smart City research project. The TeG model is deployed and validated in a city surveillance system, achieving successful real-time results in industrial settings. © 2024 IEEE.
Author Keywords abnormal behaviour; attention; computer vision; surveillance; temporal granularity


Similar Articles


Id Similarity Authors Title Published
48481 View0.881Ullah W.; Min Ullah F.U.; Ahmad Khan Z.; Wook Baik S.Sequential Attention Mechanism For Weakly Supervised Video Anomaly DetectionExpert Systems with Applications, 230 (2023)
9638 View0.868Patrikar D.R.; Parate M.R.Anomaly Detection Using Edge Computing In Video Surveillance System: ReviewInternational Journal of Multimedia Information Retrieval, 11, 2 (2022)
44339 View0.865Samaila Y.A.; Sebastian P.; Shuaibu A.N.; Azhar Ali S.S.; Muhammad S.A.; Yahya M.S.; Shuaibu I.; Sani I.M.Real-Time Deep Anomaly Detection: An Overview Of Benchmark Datasets And Performance MetricsTransportation Research Procedia, 84 (2025)
22251 View0.864Saleem G.; Bajwa U.I.; Raza R.H.; Alqahtani F.H.; Tolba A.; Xia F.Efficient Anomaly Recognition Using Surveillance VideosPeerJ Computer Science, 8 (2022)
3997 View0.858Ghoulami M.; Miyara M.; Messaoudi N.; Chiba Z.; Toulni H.; Boudhane M.A Recent Review Of Video Anomaly Detection For Smart CitiesLecture Notes on Data Engineering and Communications Technologies, 179 (2023)
9107 View0.857Raja R.; Sharma P.C.; Mahmood M.R.; Saini D.K.Analysis Of Anomaly Detection In Surveillance Video: Recent Trends And Future VisionMultimedia Tools and Applications, 82, 8 (2023)
8699 View0.853Islam M.; Dukyil A.S.; Alyahya S.; Habib S.An Iot Enable Anomaly Detection System For Smart City SurveillanceSensors, 23, 4 (2023)
3569 View0.852Zhao Y.; Man K.L.; Smith J.; Guan S.-U.A Novel Two-Stream Structure For Video Anomaly Detection In Smart City ManagementJournal of Supercomputing, 78, 3 (2022)
52352 View0.852Nayak R.; Pati U.C.; Kumar Das S.Space-Time Attention Model-Based Anomalous Event Classification For Smart City ApplicationsIntelligent Computing and Emerging Communication Technologies, ICEC 2024 (2024)
55668 View0.852El Mehdi A.M.; Anas B.; Khalid F.The Imapct Of Temporal Features In Anomaly Detection In Smart Cities2024 International Conference on Intelligent Systems and Computer Vision, ISCV 2024 (2024)