Smart City Gnosys

Smart city article details

Title Street-Level Air Quality Inference Based On Geographically Context-Aware Random Forest Using Opportunistic Mobile Sensor Network
ID_Doc 53203
Authors Qin X.; Do T.H.; Hofman J.; Rodrigo E.; Panzica V.L.M.; Deligiannis N.; Philips W.
Year 2021
Published ACM International Conference Proceeding Series, PartF171546
DOI http://dx.doi.org/10.1145/3461353.3461370
Abstract The spatial heterogeneity and temporal variability of air pollution in urban environments make air quality inference for fine-grained air pollution monitoring extremely challenging. Most of the existing work estimates the air quality using sparse measurements collected from a limited number of fixed monitoring stations or make use of computationally demanding physicochemical models simulating the source and fate of pollutants across multiple spatial scales. In this work, we propose a geographically context-aware random forest model for street-level air quality inference using high spatial resolution data collected by an opportunistic mobile sensor network. Compared with a traditional random forest model, the proposed method builds a local model for each location by considering the neighbors in both geographical and feature space. The model is evaluated on our real air quality dataset collected from mobile sensors in Antwerp, Belgium. The experimental results show that the proposed method outperforms a series of commonly used methods including Ordinary Kriging (OK), Inverse Distance Weighting (IDW) and Random forest (RF). © 2021 ACM.
Author Keywords Air quality inference; Internet of Things (IoT); Machine learning; Smart city


Similar Articles


Id Similarity Authors Title Published
49184 View0.878Garrido-Hidalgo C.; Solmaz G.; Jacobs T.; Roda-Sanchez L.Smart Beestricts: Improving The Spatial Resolution Of Air-Quality Data In Madrid Through Transfer LearningInternational Journal of Geographical Information Science (2025)
51437 View0.863Chang-Silva R.; Tariq S.; Loy-Benitez J.; Yoo C.Smart Solutions For Urban Health Risk Assessment: A Pm2.5 Monitoring System Incorporating Spatiotemporal Long-Short Term Graph Convolutional NetworkChemosphere, 335 (2023)
15028 View0.861Al-Eidi S.; Amsaad F.; Darwish O.; Tashtoush Y.; Alqahtani A.; Niveshitha N.Comparative Analysis Study For Air Quality Prediction In Smart Cities Using Regression TechniquesIEEE Access, 11 (2023)
10247 View0.859Pramanik P.; Karmakar P.; Sharma P.K.; Chatterjee S.; Roy A.; Mandal S.; Nandi S.; Chakraborty S.; Saha M.; Saha S.Aquamoho: Localized Low-Cost Outdoor Air Quality Sensing Over A Thermo-HygrometerACM Transactions on Sensor Networks, 19, 3 (2023)
30974 View0.858AlSalehy A.S.; Bailey M.Improving Time Series Data Quality: Identifying Outliers And Handling Missing Values In A Multilocation Gas And Weather DatasetSmart Cities, 8, 3 (2025)
18320 View0.857Zaidan M.A.; Xie Y.; Motlagh N.H.; Wang B.; Nie W.; Nurmi P.; Tarkoma S.; Petaja T.; Ding A.; Kulmala M.Dense Air Quality Sensor Networks: Validation, Analysis, And BenefitsIEEE Sensors Journal, 22, 23 (2022)
7188 View0.856Sasaki Y.; Harada K.; Yamasaki S.; Onizuka M.Airex: Neural Network-Based Approach For Air Quality Inference In Unmonitored CitiesProceedings - IEEE International Conference on Mobile Data Management, 2022-June (2022)
16677 View0.855Thompson J.E.Crowd-Sourced Air Quality Studies: A Review Of The Literature & Portable SensorsTrends in Environmental Analytical Chemistry, 11 (2016)
27176 View0.855Kant S.From Data To Decision-Making: Utilizing Decision Tree For Air Quality Monitoring In Smart Urban AreasInternational Journal of Information Technology (Singapore), 17, 1 (2025)
7171 View0.854Gupta R.; Khandal K.; Kandan M.Air Quality Prediction In Smart Cities Using Regression TechniquesProceedings of the 2nd IEEE International Conference on Networking and Communications 2024, ICNWC 2024 (2024)