Smart City Gnosys

Smart city article details

Title Spatio-Temporal Feature Based Multi-Participant Recruitment In Heterogeneous Crowdsensing
ID_Doc 52562
Authors Zhang F.; Yu Z.; Liu Y.; Cui H.; Guo B.
Year 2022
Published Proceedings - 2022 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Autonomous and Trusted Vehicles, Scalable Computing and Communications, Digital Twin, Privacy Computing, Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PriComp/Metaverse 2022
DOI http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00048
Abstract Mobile crowdsensing (MCS) collects sensing data by recruiting task participants to realize large-scale sensing tasks in cities. However, due to the limitations of human activity range and sensing mode, relying only on human participants to achieve this process will lead to sensing blind areas, ultimately affecting the integrity and validity of sensing data. With the rise of unmanned vehicles (UVs) and sensor-assisted MCS research, it provides new inspirations for solving complex sensing tasks in smart cities. In this article, we propose heterogeneous crowdsensing, which includes heterogeneous participants such as human participants, UVs, and fixed sensors. Our goal is to accomplish large-scale, high-quality urban sensing tasks by collaborating with these three types of heterogeneous participants. To solve the collaborative sensing problem, we propose an algorithm called spatio-temporal PPO (STPPO). We first define the capability and cost attributes of the heterogeneous participants and then divide the large-scale sensing area into a set of subregions by a subgraph construction method. Based on the spatio-temporal characteristics of the subregions and the attributes of the heterogeneous participants, we finally solve the cooperative scheduling problem of the subregions using proximal policy optimization (PPO) algorithms to maximize the overall POI collection rate and collection fairness. Finally, extensive experiments are conducted based on real datasets. The overall results of STPPO outperform other baselines, with a 30.19% performance improvement compared to the PPO algorithm. © 2022 IEEE.
Author Keywords heterogeneous crowdsensing; participants recruitment; reinforcement learning; subgraph construction


Similar Articles


Id Similarity Authors Title Published
61740 View0.896Wang Z.; Cao Y.; Jiang K.; Zhou H.; Kang J.; Zhuang Y.; Tian D.; Leung V.C.M.When Crowdsensing Meets Smart Cities: A Comprehensive Survey And New PerspectivesIEEE Communications Surveys and Tutorials, 27, 2 (2025)
16704 View0.885Montori F.; Cortesi E.; Bedogni L.; Capponi A.; Fiandrino C.; Bononi L.Crowdsensim 2.0: A Stateful Simulation Platform For Mobile Crowdsensing In Smart CitiesMSWiM 2019 - Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (2019)
16714 View0.882Bellavista P.; Cardone G.; Corradi A.; Foschini L.; Ianniello R.Crowdsensing In Smart Cities: Technical Challenges, Open Issues, And Emerging Solution GuidelinesHandbook of Research on Social, Economic, and Environmental Sustainability in the Development of Smart Cities (2015)
5697 View0.877Gao H.; Feng J.; Xiao Y.; Zhang B.; Wang W.A Uav-Assisted Multi-Task Allocation Method For Mobile Crowd SensingIEEE Transactions on Mobile Computing, 22, 7 (2023)
40549 View0.876Azmy S.B.; Zorba N.; Hassanein H.S.Optimal Transport For Mobile Crowd Sensing ParticipantsIEEE Wireless Communications and Networking Conference, WCNC, 2019-April (2019)
60990 View0.876Yu T.-Y.; Zhu X.; Maheswaran M.Vehicular Crowdsensing For Smart CitiesHandbook of Smart Cities: Software Services and Cyber Infrastructure (2018)
6772 View0.873Bian J.; Xiong H.; Wang Z.; Zhou J.; Ji S.; Chen H.; Zhang D.; Dou D.Afcs: Aggregation-Free Spatial-Temporal Mobile Community SensingIEEE Transactions on Mobile Computing, 22, 9 (2023)
28553 View0.872Yao X.-W.; Xing W.-W.; Zheng K.-C.; Qi C.-F.; Li X.-Y.; Song Q.Gtdim: Grid-Based Two-Stage Dynamic Incentive Mechanism For Mobile Crowd SensingPervasive and Mobile Computing, 103 (2024)
27660 View0.871Dasari V.S.; Kantarci B.; Pouryazdan M.; Foschini L.; Girolami M.Game Theory In Mobile Crowdsensing: A Comprehensive SurveySensors (Switzerland), 20, 7 (2020)
16695 View0.866Mathew S.S.; El Barachi M.; Kuhail M.A.Crowdpower: A Novel Crowdsensing-As-A-Service Platform For Real-Time Incident ReportingApplied Sciences (Switzerland), 12, 21 (2022)