4735  | 0.884 | Escobedo F.; Garay Canales H.B.; Garavito Criollo R.A.; Yacila Romero E.M.; Sosa Orellana C.; Bayona Ramírez J.A.; Lamadrid Vela C.A.; Gálvez Herrera J.M. | A Smart Crowd Monitoring And Management Model For Humanity In Intelligent Environments: A Real-Time Application Scenario | Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15, 4 (2024) |
38407  | 0.88 | Zeng S.; Chen X.; Su D.; Gong H. | Multi-Source Data-Driven Intelligent Analysis And Decision Optimization For High-Density Pedestrian Flows In Urban Public Spaces | Automation in Construction, 177 (2025) |
41975  | 0.879 | Huang W. | Ph.D. Forum: A Study On Real-Time Crowdedness Sensing And Pedestrian Tracking In Multi-Environment | SenSys 2024 - Proceedings of the 2024 ACM Conference on Embedded Networked Sensor Systems (2024) |
16714  | 0.879 | Bellavista P.; Cardone G.; Corradi A.; Foschini L.; Ianniello R. | Crowdsensing In Smart Cities: Technical Challenges, Open Issues, And Emerging Solution Guidelines | Handbook of Research on Social, Economic, and Environmental Sustainability in the Development of Smart Cities (2015) |
17778  | 0.873 | Mansouri W.; Alohali M.A.; Alqahtani H.; Alruwais N.; Alshammeri M.; Mahmud A. | Deep Convolutional Neural Network-Based Enhanced Crowd Density Monitoring For Intelligent Urban Planning On Smart Cities | Scientific Reports, 15, 1 (2025) |
61740  | 0.871 | Wang Z.; Cao Y.; Jiang K.; Zhou H.; Kang J.; Zhuang Y.; Tian D.; Leung V.C.M. | When Crowdsensing Meets Smart Cities: A Comprehensive Survey And New Perspectives | IEEE Communications Surveys and Tutorials, 27, 2 (2025) |
16111  | 0.869 | Ilyas N.; Shahzad A.; Kim K. | Convolutional-Neural Network-Based Image Crowd Counting: Review, Categorization, Analysis, And Performance Evaluation | Sensors (Switzerland), 20, 1 (2020) |
17784  | 0.867 | Gozet M.; Karakose M.; Yilmaz A.E. | Deep Embedded Clustering Using Crowd Density Map | IET Conference Proceedings, 2024, 37 (2024) |
41571  | 0.866 | Tomar A.; Verma K.K.; Kumar P. | People Counting Via Supervised Learning-Based 2D Cnn-Lr Model In Complex Crowd Images | Lecture Notes in Electrical Engineering, 1231 LNEE (2024) |
26337  | 0.863 | Pang Y.; Ni Z.; Zhong X. | Federated Learning For Crowd Counting In Smart Surveillance Systems | IEEE Internet of Things Journal, 11, 3 (2024) |