7111  | 0.88 | Alhaddad M.; Ever E.; Fahrioglu M.; Al-Turjman F. | Aiming For Smart Wind Energy: A Comparison Analysis Between Wind Speed Forecasting Techniques | Transactions on Emerging Telecommunications Technologies, 33, 2 (2022) |
39061  | 0.878 | Faujdar P.K.; Bargavi M.; Awasthi A.; Kulhar K.S. | Neural Network Models For Wind Power Forecasting In Smart Cities- A Review | E3S Web of Conferences, 540 (2024) |
51679  | 0.875 | Shirzadi N.; Nasiri F.; Menon R.P.; Monsalvete P.; Kaifel A.; Eicker U. | Smart Urban Wind Power Forecasting: Integrating Weibull Distribution, Recurrent Neural Networks, And Numerical Weather Prediction | Energies, 16, 17 (2023) |
35996  | 0.862 | Haque A.; Malik A. | Machine Learning In Renewable Energy Systems For Smart Cities | Smart Cities: Power Electronics, Renewable Energy, and Internet of Things (2024) |
14998  | 0.861 | Harbola S.; Coors V. | Comparative Analysis Of Lstm, Rf And Svm Architectures For Predicting Wind Nature For Smart City Planning | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 4/W9 (2019) |
36001  | 0.859 | Bhardwaj B.; Ganesan M. | Machine Learning In Wind Energy: Generation To Supply | Advances in Science, Technology and Innovation (2022) |
3524  | 0.855 | Navas K.B.R.; Banu J.K.; Katyal R.; Sivakumar B.; Prakash S.; Reddy J.K. | A Novel Short Term Wind Speed Forecasting Based On Hybrid Neural Network: A Case Study On Smart City In India | 7th Iran Wind Energy Conference, IWEC 2021 (2021) |
36056  | 0.855 | Tiwari S.; Jain A.; Ahmed N.M.O.S.; Charu; Alkwai L.M.; Dafhalla A.K.Y.; Hamad S.A.S. | Machine Learning-Based Model For Prediction Of Power Consumption In Smart Grid- Smart Way Towards Smart City | Expert Systems, 39, 5 (2022) |
8459  | 0.85 | Alghamdi H.; Hafeez G.; Ali S.; Ullah S.; Khan M.I.; Murawwat S.; Hua L.-G. | An Integrated Model Of Deep Learning And Heuristic Algorithm For Load Forecasting In Smart Grid | Mathematics, 11, 21 (2023) |
42059  | 0.85 | Wu Z.; Sun B.; Feng Q.; Wang Z.; Pan J. | Physics-Informed Ai Surrogates For Day-Ahead Wind Power Probabilistic Forecasting With Incomplete Data For Smart Grid In Smart Cities | CMES - Computer Modeling in Engineering and Sciences, 137, 1 (2023) |