Smart City Gnosys

Smart city article details

Title Secure Federated Learning With Fully Homomorphic Encryption For Iot Communications
ID_Doc 47639
Authors Hijazi N.M.; Aloqaily M.; Guizani M.; Ouni B.; Karray F.
Year 2024
Published IEEE Internet of Things Journal, 11, 3
DOI http://dx.doi.org/10.1109/JIOT.2023.3302065
Abstract The emergence of the Internet of Things (IoT) has revolutionized people's daily lives, providing superior quality services in cognitive cities, healthcare, and smart buildings. However, smart buildings use heterogeneous networks. The massive number of interconnected IoT devices increases the possibility of IoT attacks, emphasizing the necessity of secure and privacy-preserving solutions. Federated learning (FL) has recently emerged as a promising machine learning (ML) paradigm for IoT networks to address these concerns. In FL, multiple devices collaborate to learn a global model without sharing their raw data. However, FL still faces privacy and security concerns due to the transmission of sensitive data (i.e., model parameters) over insecure communication channels. These concerns can be addressed using fully homomorphic encryption (FHE), a powerful cryptographic technique that enables computations on encrypted data without requiring them to be decrypted first. In this study, we propose a secure FL approach in IoT-enabled smart cities that combines FHE and FL to provide secure data and maintain privacy in distributed environments. We present four different FL-based FHE approaches in which data are encrypted and transmitted over a secure medium. The proposed approaches achieved high accuracy, recall, precision, and F-scores, in addition to providing strong privacy and security safeguards. Furthermore, the proposed approaches effectively reduced communication overhead and latency compared to the baseline approach. These approaches yielded improvements ranging from 80.15% to 89.98% in minimizing communication overhead. Additionally, one of the approaches achieved a remarkable latency reduction of 70.38%. The implementation of these security models is nontrivial, and the code is publicly available at https://github.com/Artifitialleap-MBZUAI/Secure-Federated-Learning-with-Fully-Homomorphic-Encryption-for-IoT-Communications. © 2014 IEEE.
Author Keywords Cognitive cities; federated learning (FL); homomorphic encryption (HE); Internet of Things (IoT); security


Similar Articles


Id Similarity Authors Title Published
26365 View0.91Aggarwal M.; Khullar V.; Rani S.; André Prola T.; Bhattacharjee S.B.; Shawon S.M.; Goyal N.Federated Learning On Internet Of Things: Extensive And Systematic ReviewComputers, Materials and Continua, 79, 2 (2024)
26614 View0.888Narkedimilli S.; Pravisha P.; Sriram A.V.; Raghav S.; Vangapandu P.Fl-Dabe-Bc: A Privacy-Enhanced Decentralized Authentication And Secure Communication Framework For Fl In Iot-Enabled Smart CitiesFMSys 2025 - Proceedings of the 2025 2nd International Workshop on Foundation Models for Cyber-Physical Systems and Internet of Things, 2025 Cyber-Physical Systems and Internet-of-Things Week, CPS-IoT Week 2025 Workshops (2025)
5652 View0.888Wang S.; Chen C.; Han B.; Zhu J.A Trusted And Decentralized Federated Learning Framework For Iot Devices In Smart CityProceedings - IEEE Congress on Cybermatics: 2024 IEEE International Conferences on Internet of Things, iThings 2024, IEEE Green Computing and Communications, GreenCom 2024, IEEE Cyber, Physical and Social Computing, CPSCom 2024, IEEE Smart Data, SmartData 2024 (2024)
47112 View0.886Wang R.; Lai J.; Li X.; He D.; Khan M.K.Rpifl: Reliable And Privacy-Preserving Federated Learning For The Internet Of ThingsJournal of Network and Computer Applications, 221 (2024)
43157 View0.883Abdel-Basset M.; Hawash H.; Moustafa N.; Razzak I.; Abd Elfattah M.Privacy-Preserved Learning From Non-I.I.D Data In Fog-Assisted Iot: A Federated Learning ApproachDigital Communications and Networks, 10, 2 (2024)
26346 View0.883Nguyen D.C.; Ding M.; Pathirana P.N.; Seneviratne A.; Li J.; Vincent Poor H.Federated Learning For Internet Of Things: A Comprehensive SurveyIEEE Communications Surveys and Tutorials, 23, 3 (2021)
54221 View0.882Yang H.; Liu H.; Yuan X.; Wu K.; Ni W.; Zhang J.A.; Liu R.P.Synergizing Intelligence And Privacy: A Review Of Integrating Internet Of Things, Large Language Models, And Federated Learning In Advanced Networked SystemsApplied Sciences (Switzerland), 15, 12 (2025)
19206 View0.881Thakur A.; Tyagi R.; Tripathy H.K.; Yang T.; Rathore R.S.; Mo D.; Wang L.Detecting Network Attack Using Federated Learning For Iot DevicesInternational Conference on Intelligent Algorithms for Computational Intelligence Systems, IACIS 2024 (2024)
23846 View0.881Karimy A.U.; Reddy P.C.Enhancing Iot Security: A Novel Approach With Federated Learning And Differential Privacy IntegrationInternational Journal of Computer Networks and Communications, 16, 4 (2024)
43179 View0.877Tan Z.-S.; See-To E.W.K.; Lee K.-Y.; Dai H.-N.; Wong M.-L.Privacy-Preserving Federated Learning For Proactive Maintenance Of Iot-Empowered Multi-Location Smart City FacilitiesJournal of Network and Computer Applications, 231 (2024)