34796  | 0.867 | Bertoncini A.; Ceselli A.; Quadri C. | Latency-Aware Placement Of Microservices In The Cloud-To-Edge Continuum Via Resource Scaling | Proceedings - 2025 IEEE International Conference on Smart Computing, SMARTCOMP 2025 (2025) |
37003  | 0.863 | Boudieb W.; Malki A.; Malki M.; Badawy A.; Barhamgi M. | Microservice Instances Selection And Load Balancing In Fog Computing Using Deep Reinforcement Learning Approach | Future Generation Computer Systems, 156 (2024) |
23430  | 0.86 | Sellami B.; Hakiri A.; Yahia S.B.; Berthou P. | Energy-Aware Task Scheduling And Offloading Using Deep Reinforcement Learning In Sdn-Enabled Iot Network | Computer Networks, 210 (2022) |
21827  | 0.86 | Rosmaninho R.; Raposo D.; Rito P.; Sargento S. | Edge-Cloud Continuum Orchestration Of Critical Services: A Smart-City Approach | IEEE Transactions on Services Computing, 18, 3 (2025) |
57704  | 0.854 | Zhu K.; Zhang Z.; Sun F. | Toward Intelligent Cooperation At The Edge: Improving The Qos Of Workflow Scheduling With The Competitive Cooperation Of Edge Servers | Wireless Networks, 30, 6 (2024) |
46071  | 0.852 | Cui X. | Resource Allocation In Iot Edge Computing Networks Based On Reinforcement Learning | Advances in Transdisciplinary Engineering, 70 (2025) |
47314  | 0.851 | Pandey P. | Scalable And Resilient Microservices Deployment For Edge Computing With Kubernetes | International Conference on Advanced Computing Technologies, ICoACT 2025 (2025) |