Smart City Gnosys

Smart city article details

Title Sampling Strategy Analysis Of Machine Learning Models For Energy Consumption Prediction
ID_Doc 47255
Authors Wu Z.; Chu W.
Year 2021
Published 2021 9th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2021
DOI http://dx.doi.org/10.1109/SEGE52446.2021.9534987
Abstract With the development of the Internet of things (IoT), energy consumption of smart buildings has been widely concerned. The prediction of building energy consumption is of great significance for energy conservation and environmental protection as well as the construction of smart city. With the development of artificial intelligence, machine learning technology has been introduced to energy consumption prediction. In this study, multiple learning algorithms including Support Vector Regression (SVR), Artificial Neural Network (ANN), Random Forest (RF) are developed to perform energy consumption prediction. The most appropriate machine learning algorithm for energy consumption prediction has been investigated and found to be the random forest algorithm. Based on the developed machine learning models, studies on the sampling strategy for energy consumption prediction have been conducted. It is found that the variance of data has a significant effect on the prediction accuracy, and a better prediction result can be achieved by increasing the sampling density over the data with high variance. This result can be used to optimize the machine learning algorithm for building energy consumption prediction and improve the computational efficiency. © 2021 IEEE.
Author Keywords energy consumption; machine learning; random forest; sampling strategy


Similar Articles


Id Similarity Authors Title Published
9463 View0.9Singh T.; Solanki A.; Sharma S.K.Analytical Study Of Machine Learning Techniques On The Smart Home Energy ConsumptionAIP Conference Proceedings, 2938, 1 (2023)
13024 View0.891Ardabili S.; Mosavi A.; Várkonyi-Kóczy A.R.Building Energy Information: Demand And Consumption Prediction With Machine Learning Models For Sustainable And Smart CitiesLecture Notes in Networks and Systems, 101 (2020)
57903 View0.889Daniel H.; Mantha B.R.K.; Soto B.G.D.Towards A Review Of Building Energy Forecast ModelsComputing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019 (2019)
32444 View0.876Nijim M.; Kanumuri V.; Albetaineh H.; Goyal A.Intelligent Monitoring And Management Of Smart Buildings Using Machine Learning: Optimizing User Behavior And Energy EfficiencyProceedings - 2023 Congress in Computer Science, Computer Engineering, and Applied Computing, CSCE 2023 (2023)
13039 View0.873Chaganti R.; Rustam F.; Daghriri T.; Díez I.D.L.T.; Mazón J.L.V.; Rodríguez C.L.; Ashraf I.Building Heating And Cooling Load Prediction Using Ensemble Machine Learning ModelSensors, 22, 19 (2022)
26858 View0.872Dong C.; Du L.; Ji F.; Song Z.; Zheng Y.; Howard A.; Intrevado P.; Woodbridge D.Forecasting Smart Meter Energy Usage Using Distributed Systems And Machine LearningProceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018 (2019)
54322 View0.87Ardabili S.; Abdolalizadeh L.; Mako C.; Torok B.; Mosavi A.Systematic Review Of Deep Learning And Machine Learning For Building EnergyFrontiers in Energy Research, 10 (2022)
48418 View0.866Kumar S.; Nisha Z.; Singh J.; Sharma A.K.Sensor Network Driven Novel Hybrid Model Based On Feature Selection And Svr To Predict Indoor Temperature For Energy Consumption Optimisation In Smart BuildingsInternational Journal of System Assurance Engineering and Management, 13, 6 (2022)
51061 View0.862Arabasy M.; Hussein M.F.; Abu Osba R.; Al Dweik S.Smart Housing: Integrating Machine Learning In Sustainable Urban Planning, Interior Design, And DevelopmentAsian Journal of Civil Engineering, 26, 1 (2025)
8877 View0.862Hemlata; Rai M.An Optimized Demand For Cost And Environment Benefits Towards Smart Residentials Using Iot And Machine LearningSustainable Smart Homes and Buildings with Internet of Things (2024)