Smart City Gnosys

Smart city article details

Title A Secure Traffic Police Remote Sensing Approach Via A Deep Learning-Based Low-Altitude Vehicle Speed Detector Through Uavs In Smart Cites: Algorithm, Implementation And Evaluation
ID_Doc 4512
Authors Moshayedi A.J.; Roy A.S.; Taravet A.; Liao L.; Wu J.; Gheisari M.
Year 2023
Published Future Transportation, 3, 1
DOI http://dx.doi.org/10.3390/futuretransp3010012
Abstract Nowadays, the unmanned aerial vehicle (UAV) has a wide application in transportation. For instance, by leveraging it, we are able to perform accurate and real-time vehicle speed detection in an IoT-based smart city. Although numerous vehicle speed estimation methods exist, most of them lack real-time detection in different situations and scenarios. To fill the gap, this paper introduces a novel low-altitude vehicle speed detector system using UAVs for remote sensing applications of smart cities, forging to increase traffic safety and security. To this aim, (1) we have found the best possible Raspberry PI’s field of view (FOV) camera in indoor and outdoor scenarios by changing its height and degree. Then, (2) Mobile Net-SSD deep learning model parameters have been embedded in the PI4B processor of a physical car at different speeds. Finally, we implemented it in a real environment at the JXUST university intersection by changing the height (0.7 to 3 m) and the camera angle on the UAV. Specifically, this paper proposed an intelligent speed control system without the presence of real police that has been implemented on the edge node with the configuration of a PI4B and an Intel Neural Computing 2, along with the PI camera, which is armed with a Mobile Net-SSD deep learning model for the smart detection of vehicles and their speeds. The main purpose of this article is to propose the use of drones as a tool to detect the speeds of vehicles, especially in areas where it is not easy to access or install a fixed camera, in the context of future smart city traffic management and control. The experimental results have proven the superior performance of the proposed low-altitude UAV system rather than current studies for detecting and estimating the vehicles’ speeds in highly dynamic situations and different speeds. As the results showed, our solution is highly effective on crowded roads, such as junctions near schools, hospitals, and with unsteady vehicles from the speed level point of view. © 2023 by the authors.
Author Keywords deep learning; remote sensing; transportation; unmanned aerial vehicle; vehicle detection; vehicle speed estimation


Similar Articles


Id Similarity Authors Title Published
27308 View0.909Ahmed M.W.; Adnan M.; Ahmed M.; Janssens D.; Wets G.; Ahmed A.; Ectors W.From Stationary To Nonstationary Uavs: Deep-Learning-Based Method For Vehicle Speed EstimationAlgorithms, 17, 12 (2024)
54411 View0.9Iftikhar S.; Asim M.; Zhang Z.; Muthanna A.; Chen J.; El-Affendi M.; Sedik A.; Abd El-Latif A.A.Target Detection And Recognition For Traffic Congestion In Smart Cities Using Deep Learning-Enabled Uavs: A Review And AnalysisApplied Sciences (Switzerland), 13, 6 (2023)
51478 View0.889Othman K.M.; Alzaben N.; Alruwais N.; Maray M.; Darem A.A.; Mohamed A.Smart Surveillance: Advanced Deep Learning-Based Vehicle Detection And Tracking Model On Uav ImageryFractals, 33, 2 (2025)
5465 View0.883Bisio I.; Garibotto C.; Haleem H.; Lavagetto F.; Sciarrone A.A Systematic Review Of Drone Based Road Traffic Monitoring SystemIEEE Access, 10 (2022)
34074 View0.882Gorobetz M.; Timofejevs J.; Potapovs A.; Obusevs A.Iot-Enabled Single-Camera Speed Sensor For Smart City TasksElectronics (Switzerland), 13, 12 (2024)
10019 View0.881Shirazi M.S.; Patooghy A.; Shisheie R.; Haque M.M.Application Of Unmanned Aerial Vehicles In Smart Cities Using Computer Vision Techniques2020 IEEE International Smart Cities Conference, ISC2 2020 (2020)
32084 View0.88Bakirci M.; Bayraktar I.Integrating Uav-Based Aerial Monitoring And Ssd For Enhanced Traffic Management In Smart CitiesProceedings of 2024 1st Edition of the Mediterranean Smart Cities Conference, MSCC 2024 (2024)
33073 View0.877Bakirci M.Internet Of Things-Enabled Unmanned Aerial Vehicles For Real-Time Traffic Mobility Analysis In Smart CitiesComputers and Electrical Engineering, 123 (2025)
60954 View0.873Bayraktar R.; Erdem M.E.Vehicle Speed Detection Using Depth Map On Real Time Systems2023 IEEE East-West Design and Test Symposium, EWDTS 2023 - Proceedings (2023)
6716 View0.872Caruso A.; Galluccio L.; Grasso C.; Ignaccolo M.; Inturri G.; Leonardi P.; Schembra G.; Torrisi V.Advancing Urban Traffic Monitoring In Smart Cities: A Field Experiment With Uav-Based System For Transport Planning And Intelligent Traffic ManagementIntegrated Communications, Navigation and Surveillance Conference, ICNS (2025)