Smart City Gnosys

Smart city article details

Title Prediction Of Ev Charging Behavior Using Boa-Based Deep Residual Attention Network
ID_Doc 42812
Authors Appadurai J.P.; Rajesh T.; Yugha R.; Sarkar R.; Thirumalraj A.; Kavin B.P.; Seng G.H.
Year 2024
Published Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 40, 2
DOI http://dx.doi.org/10.23967/j.rimni.2024.02.002
Abstract In smart city applications, electric vehicles (EVs) are rapidly gaining popularity due to their ability to help cut down on carbon emissions. Numerous environmental conditions, including terrain, traffic, driving style, temperature, and so on, affect the amount of energy an EV needs to operate. However, the burden on power grid infrastructure from widespread EV deployment is one of the biggest obstacles. Smart scheduling algorithms can be used to handle the rising public charging demand. Scheduling algorithms can be improved using data-driven tools and procedures to study EV charging behaviour. Predictions of behaviour, including temperature, departure time, and energy requirements, have been the focus of research on past charging data. Weather, traffic, and surrounding events are all factors that have been mostly ignored but which could improve representations and predictions. The DRA-Net, or Deep Residual Attention Network, was developed by the researchers and is used to recognize EV charging patterns. To minimize data loss, the Res-Attention component utilized tighter connections and smaller convolutional kernels (3 x 3). In addition, an Artificial Butterfly Optimisation Algorithm (BOA) model is used to fine-tune the DRA-Net's hyper-parameters. We highlight the significance of traffic and weather info for charging behaviour predictions, and the study's experimental forecasts show a considerable improvement over prior work on the same dataset. The future of electric vehicle (EV) research has been mapped out thanks to in-depth study, and as a result, EVs will soon significantly impact the auto industry. © 2024, Scipedia S.L.. All rights reserved.
Author Keywords Algorithm; Artificial Butterfly Optimization; Charging Behaviour; Deep Residual Attention; Electric vehicle; Energy Needs; Information; Network


Similar Articles


Id Similarity Authors Title Published
40684 View0.935Vijay Kumar M.; Gondesi J.R.; Krishna G.S.; Kumar I.A.Optimization Of Users Ev Charging Data Using Convolutional Neural NetworkLecture Notes in Networks and Systems, 731 LNNS (2024)
35913 View0.925Shahriar S.; Al-Ali A.R.; Osman A.H.; Dhou S.; Nijim M.Machine Learning Approaches For Ev Charging Behavior: A ReviewIEEE Access, 8 (2020)
26834 View0.924Cavus M.; Ayan H.; Dissanayake D.; Sharma A.; Deb S.; Bell M.Forecasting Electric Vehicle Charging Demand In Smart Cities Using Hybrid Deep Learning Of Regional Spatial BehavioursEnergies, 18, 13 (2025)
7022 View0.897Khan A.A.; Mahendran R.K.; Ullah F.; Ali F.; Bashir A.K.; Dabel M.M.A.; Omar M.Ai-Driven Dynamic Allocation And Management Optimization For Ev Charging StationsIEEE Transactions on Intelligent Transportation Systems (2025)
24056 View0.894Aldossary M.Enhancing Urban Electric Vehicle (Ev) Fleet Management Efficiency In Smart Cities: A Predictive Hybrid Deep Learning FrameworkSmart Cities, 7, 6 (2024)
39955 View0.892Naitmalek Y.; Najib M.; Bakhouya M.; Essaaidi M.On The Use Of Machine Learning For State-Of- Charge Forecasting In Electric Vehicles5th IEEE International Smart Cities Conference, ISC2 2019 (2019)
8508 View0.891Senthilkumar T.; Sivaraju S.S.; Anuradha T.; Vimalarani C.An Intelligent Electric Vehicle Charging System In A Smart Grid Using Artificial IntelligenceOptimal Control Applications and Methods, 46, 3 (2025)
42854 View0.888Garg R.; Deogaonkar A.; Garia P.; Ahamad I.; Kharayat P.S.; Joshi T.Prediction Of User Behaviour Of Electric Vehicles Utilizing Ensembled Machine Learning Technique2024 IEEE International Conference on Communication, Computing and Signal Processing, IICCCS 2024 (2024)
22524 View0.884Doda D.K.; Beemkumar N.; Awasthi A.; Gautam A.K.Electric Vehicle Energy Management: Charging In Sustainable Urban Settings For Smart CitiesE3S Web of Conferences, 540 (2024)
23309 View0.884Laroui M.; Dridi A.; Afifi H.; Moungla H.; Marot M.; Cherif M.A.Energy Management For Electric Vehicles In Smart Cities: A Deep Learning Approach2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019 (2019)