Smart City Gnosys

Smart city article details

Title Performance Evaluation Of Machine Learning And Neural Network-Based Algorithms For Predicting Segment Availability In Aiot-Based Smart Parking
ID_Doc 41769
Authors Dia I.; Ahvar E.; Lee G.M.
Year 2022
Published Network, 2, 2
DOI http://dx.doi.org/10.3390/network2020015
Abstract Finding an available parking place has been considered a challenge for drivers in large-size smart cities. In a smart parking application, Artificial Intelligence of Things (AIoT) can help drivers to save searching time and automotive fuel by predicting short-term parking place availability. However, performance of various Machine Learning and Neural Network-based (MLNN) algorithms for predicting parking segment availability can be different. To find the most suitable MLNN algorithm for the above mentioned application, this paper evaluates performance of a set of well-known MLNN algorithms as well as different combinations of them (i.e., known as Ensemble Learning or Voting Classifier) based on a real parking datasets. The datasets contain around five millions records of the measured parking availability in San Francisco. For evaluation, in addition to the cross validation scores, we consider resource requirements, simplicity and execution time (i.e., including both training and testing times) of algorithms. Results show that while some ensemble learning algorithms provide the best performance in aspect of validation score, they consume a noticeable amount of computing and time resources. On the other hand, a simple Decision Tree (DT) algorithm provides a much faster execution time than ensemble learning algorithms, while its performance is still acceptable (e.g., DT’s accuracy is less than 1% lower than the best ensemble algorithm). We finally propose and simulate a recommendation system using the DT algorithm. We have found that around 77% of drivers can not find a free spot in their selected destinations (i.e., street or segment) and estimated that the recommendation system, by introducing alternative closest vacant locations to destinations, can save, in total, 3500 min drivers searching time for 1000 parking spot requests. It can also help to reduce the traffic and save a noticeable amount of automotive fuel. © 2022 by the authors.
Author Keywords Artificial Intelligence of Things; deep learning; Internet of Things; machine learning; neural network; performance evaluation; smart city; smart parking


Similar Articles


Id Similarity Authors Title Published
51295 View0.92Jakkaladiki S.P.; Poulová P.; Pražák P.; Tesařová B.Smart Parking System: Optimized Ensemble Deep Learning Model With Internet Of Things For Smart CitiesScalable Computing, 24, 4 (2023)
36016 View0.916Soumana A.N.H.; Salah M.B.; Idbraim S.; Boulouz A.Machine Learning Models In The Large-Scale Prediction Of Parking Space Availability For Sustainable CitiesEAI Endorsed Transactions on Internet of Things, 10 (2024)
38660 View0.914Inam S.; Mahmood A.; Khatoon S.; Alshamari M.; Nawaz N.Multisource Data Integration And Comparative Analysis Of Machine Learning Models For On-Street Parking PredictionSustainability (Switzerland), 14, 12 (2022)
7088 View0.91Shalini M.K.; Hanumanthappa J.; Santhosh Kumar K.S.; Shiva Prakash S.P.Ai-Powered Hybrid Smart Parking: Optimizing Parking Management Across Diverse Applications In Smart CitiesProcedia Computer Science, 258 (2025)
15099 View0.91Soumana A.N.H.; Salah M.B.; Idbraim S.; Boulouz A.Comparing Machine Learning Models For Large Scale Prediction Of Parking Space AvailabilityAIP Conference Proceedings, 2814, 1 (2023)
19257 View0.909Rajyalakshmi V.; Lakshmanna K.Detection Of Car Parking Space By Using Hybrid Deep Densenet Optimization AlgorithmInternational Journal of Network Management, 34, 1 (2024)
27581 View0.908Sumini M.V.; Mulerikkal J.; Ramkumar P.B.; Tharakan P.Fuzzy Concepts And Machine Learning Algorithms For Car Park Occupancy And Route PredictionLecture Notes in Networks and Systems, 120 (2020)
44321 View0.907Alghoniemy A.; Susko J.; Kahle D.; Saunders L.; Belsare P.; El-Tawab S.Real-Time Cloud-Based Data Analysis Using Machine Learning For Smart Parking2024 International Conference on Computer and Applications, ICCA 2024 (2024)
1340 View0.906Arjona J.; Linares M.P.; Casanovas J.A Deep Learning Approach To Real-Time Parking Availability Prediction For Smart CitiesACM International Conference Proceeding Series (2019)
36188 View0.905Miao L.Making Smart Parking Decisions: A Driver'S PerspectiveProceedings - 2019 4th International Conference on Computational Intelligence and Applications, ICCIA 2019 (2019)