Smart City Gnosys

Smart city article details

Title A 6G-Enabled Edge-Assisted Internet Of Drone Things Ecosystem For Fire Detection
ID_Doc 380
Authors Mukherjee A.; Rakshit S.; Panja A.K.; De D.; Dey N.
Year 2024
Published Lecture Notes in Networks and Systems, 975
DOI http://dx.doi.org/10.1007/978-981-97-2614-1_2
Abstract Disaster detection using unmanned aerial vehicles (UAVs) is a popular study topic. The modern Internet of Drone Things (IoDT) makes use of cutting-edge, low-latency vehicle communication and edge-enabled intelligent computing concepts to support the ecosystem’s advancement to the next level. Using an edge-enabled intelligent UAV network and the opportunistic message queuing telemetry transport (MQTT) protocol, we propose an ecosystem for fire detection in a smart city and smart forest scenario. We then use an intelligent deep learning model to perform precise fire detection. According to the experimental findings, an ultralow latency sparse network environment with opportunistic flooding and forwarding protocols with Realtime Streaming Protocol (RTSP) support can achieve a maximum message delivery ratio of 0.9. On drones or edge-enabled devices, a deep CNN model is applied. The prediction of the fire intensity that can be detected in the chosen area of interest by using EfficientNet is 99.1% accurate. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Author Keywords 6G; CNN; IoDT; OpenCV; RTSP


Similar Articles


Id Similarity Authors Title Published
58208 View0.896Bittencourt J.C.N.; Costa D.G.; Portugal P.; Vasques F.Towards Lightweight Fire Detection At The Extreme Edge Based On Decision Trees2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024 (2024)
59288 View0.875Sharma A.; Singh P.K.Uav-Based Framework For Effective Data Analysis Of Forest Fire Detection Using 5G Networks: An Effective Approach Towards Smart Cities SolutionsInternational Journal of Communication Systems, 38, 1 (2025)
59290 View0.873Hussain T.; Dai H.; Gueaieb W.; Sicklinger M.; De Masi G.Uav-Based Multi-Scale Features Fusion Attention For Fire Detection In Smart City EcosystemsISC2 2022 - 8th IEEE International Smart Cities Conference (2022)
17955 View0.861Qadir Z.; Le K.; Bao V.N.Q.; Tam V.W.Y.Deep Learning-Based Intelligent Post-Bushfire Detection Using UavsIEEE Geoscience and Remote Sensing Letters, 21 (2024)
21758 View0.859Gudepu V.; Pappu B.; Javvadi T.; Bassoli R.; Fitzek F.H.P.; Valcarenghi L.; Devi D.V.N.; Kondepu K.Edge Computing In Micro Data Centers For Firefighting In Residential Areas Of Future Smart CitiesInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022 (2022)
26576 View0.857Dhamodaran S.; Ahamad S.; Ramesh J.V.N.; Sathappan S.; Namdev A.; Kanse R.R.; Pramanik S.Fire Detection System Utilizing An Aggregate Technique In Uav And Cloud ComputingHandbook of Research on Thrust Technologies? Effect on Image Processing (2023)
26570 View0.854Mahgoub A.; Tarrad N.; Elsherif R.; Ismail L.; Al-Ali A.Fire Alarm System For Smart Cities Using Edge Computing2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020 (2020)
40809 View0.853Bukhari S.M.S.; Dahmani N.; Gyawali S.; Zafar M.H.; Sanfilippo F.; Raja K.Optimizing Fire Detection In Remote Sensing Imagery For Edge Devices: A Quantization-Enhanced Hybrid Deep Learning ModelDisplays, 89 (2025)