Smart City Gnosys

Smart city article details

Title Mobile Crowdsensing For Data Freshness: A Deep Reinforcement Learning Approach
ID_Doc 37265
Authors Dai Z.; Wang H.; Liu C.H.; Han R.; Tang J.; Wang G.
Year 2021
Published Proceedings - IEEE INFOCOM, 2021-May
DOI http://dx.doi.org/10.1109/INFOCOM42981.2021.9488791
Abstract Data collection by mobile crowdsensing (MCS) is emerging as data sources for smart city applications, however how to ensure data freshness has sparse research exposure but quite important in practice. In this paper, we consider to use a group of mobile agents (MAs) like UAVs and driverless cars which are equipped with multiple antennas to move around in the task area to collect data from deployed sensor nodes (SNs). Our goal is to minimize the age of information (AoI) of all SNs and energy consumption of MAs during movement and data upload. To this end, we propose a centralized deep reinforcement learning (DRL)-based solution called "DRL-freshMCS"for controlling MA trajectory planning and SN scheduling. We further utilize implicit quantile networks to maintain the accurate value estimation and steady policies for MAs. Then, we design an exploration and exploitation mechanism by dynamic distributed prioritized experience replay. We also derive the theoretical lower bound for episodic AoI. Extensive simulation results show that DRL-freshMCS significantly reduces the episodic AoI per remaining energy, compared to five baselines when varying different number of antennas and data upload thresholds, and number of SNs. We also visualize their trajectories and AoI update process for clear illustrations. © 2021 IEEE.
Author Keywords Data freshness; Deep reinforcement learning; Mobile crowdsensing


Similar Articles


Id Similarity Authors Title Published
58717 View0.901Tao X.; Hafid A.S.Trajectory Design In Uav-Aided Mobile Crowdsensing: A Deep Reinforcement Learning ApproachIEEE International Conference on Communications (2021)
9695 View0.881Chen S.; Wei K.; Pei T.; Long S.Aoi-Guaranteed Uav Crowdsensing: A Ugv-Assisted Deep Reinforcement Learning ApproachAd Hoc Networks, 173 (2025)
34442 View0.872Zhu C.; Zhu X.; Qin T.Joint Trajectory And Incentive Optimization For Privacy-Preserving Uav Crowdsensing Via Multi-Agent Federated Reinforcement LearningInternet of Things (The Netherlands), 33 (2025)
16704 View0.869Montori F.; Cortesi E.; Bedogni L.; Capponi A.; Fiandrino C.; Bononi L.Crowdsensim 2.0: A Stateful Simulation Platform For Mobile Crowdsensing In Smart CitiesMSWiM 2019 - Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (2019)
1129 View0.869Liu X.; Wang Y.; Gao H.; Ngai E.C.H.; Zhang B.; Wang C.; Wang W.A Coverage-Aware Task Allocation Method For Uav-Assisted Mobile Crowd SensingIEEE Transactions on Vehicular Technology, 73, 7 (2024)
5697 View0.868Gao H.; Feng J.; Xiao Y.; Zhang B.; Wang W.A Uav-Assisted Multi-Task Allocation Method For Mobile Crowd SensingIEEE Transactions on Mobile Computing, 22, 7 (2023)
47094 View0.867Zhao L.; Wang J.; Liu J.; Kato N.Routing For Crowd Management In Smart Cities: A Deep Reinforcement Learning PerspectiveIEEE Communications Magazine, 57, 4 (2019)
38914 View0.866Xiang C.-C.; Li Y.-Y.; Feng L.; Chen C.; Guo S.-T.; Yang P.-L.Near-Optimal Vehicular Crowdsensing Task Allocation Empowered By Deep Reinforcement Learning; [基于深度强化学习的智联网汽车感知任务分配]Jisuanji Xuebao/Chinese Journal of Computers, 45, 5 (2022)
60527 View0.861Wang S.-Y.; Lin C.-D.Using Deep Reinforcement Learning To Train And Periodically Re-Train A Data-Collecting Drone Based On Real-Life MeasurementsJournal of Network and Computer Applications, 221 (2024)
13345 View0.856Rao B.; Zhang X.; Zhu T.; You Y.; Li Y.; Duan J.; Zhou Z.; Chen X.Can You Do Both? Balancing Order Serving And Crowdsensing For Ride-Hailing VehiclesIEEE International Workshop on Quality of Service, IWQoS (2024)