Smart City Gnosys

Smart city article details

Title Machine Learning For Pre/Post Flight Uav Rotor Defect Detection Using Vibration Analysis
ID_Doc 35969
Authors Gemayel A.; Manias D.M.; Shami A.
Year 2024
Published Proceedings - IEEE Global Communications Conference, GLOBECOM
DOI http://dx.doi.org/10.1109/GLOBECOM52923.2024.10901699
Abstract Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities. In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures. To this end, the work presented in this paper leverages signal processing and Machine Learning (ML) methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects during pre and post-flight operation. With the help of dimensionality reduction techniques, the Random Forest algorithm exhibited the best performance and detected defective rotor blades perfectly. Additionally, a comprehensive analysis of the impact of various feature subsets is presented to gain insight into the factors affecting the model's classification decision process. © 2024 IEEE.
Author Keywords Defect Detection; Drone Analytics; Industrial Analytics; Machine Learning; Signal Processing; UAV


Similar Articles


Id Similarity Authors Title Published
39010 View0.87Gemayel A.; Manias D.M.; Shami A.Network Resource Optimization For Ml-Based Uav Condition Monitoring With Vibration AnalysisIEEE Networking Letters, 7, 2 (2025)