42563  | 0.912 | Rahul; Gangadharappa M.; Kharola A. | Power Signal Disturbances Analysis Based On Transfer Learning In Deep Architecture | Proceedings of 2022 IEEE International Conference on Current Development in Engineering and Technology, CCET 2022 (2023) |
8065  | 0.903 | Baig M.A.A.; Ratyal N.I.; Amin A.; Jamil U.; Liaquat S.; Khalid H.M.; Zia M.F. | An Ensemble Deep Cnn Approach For Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer | Future Internet, 16, 12 (2024) |
45054  | 0.871 | John G.K.; Sindhu M.R.; Nambiar T.N.P. | Renewable Energy Based Hybrid Power Quality Compensator Based On Deep Learning Network For Smart Cities | Artificial Intelligence and Machine Learning in Smart City Planning (2023) |
42554  | 0.864 | Joga S.R.K.; Priyadarshini S.; Surisetti S.S.M.N.; Karri S.; Jalaluddin S.; Madhu K. | Power Quality Disturbances Diagnosis In Microgrid Integrated Electric Vehicle Charging Stations | 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation, SeFet 2023 (2023) |
42836  | 0.861 | Sarkar P.K.; Sarkar P.K.; Bin Atique M.M.A. | Prediction Of Power Consumption In Smart Grid: A Reliable Path To A Smart City Based On Various Machine Learning Models | International Conference on Recent Progresses in Science, Engineering and Technology, ICRPSET 2022 (2022) |
42556  | 0.861 | Miron A.; Cziker A.C.; Ungureanu S.; Beleiu H.G.; Darab C.P. | Power Quality Prediction At Consumers Using A Hybrid Knowledge-Based Approach | Proceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023 (2023) |
2465  | 0.857 | Kavya B.M.; Sharmila N.; Naveen K.B.; Mallikarjunaswamy S.; Manu K.S.; Manjunatha S. | A Machine Learning Based Smart Grid For Home Power Management Using Cloud-Edge Computing System | International Conference on Recent Advances in Science and Engineering Technology, ICRASET 2023 (2023) |
22880  | 0.856 | Pamir; Javaid N.; Akbar M.; Aldegheishem A.; Alrajeh N.; Mohammed E.A. | Employing A Machine Learning Boosting Classifiers Based Stacking Ensemble Model For Detecting Non Technical Losses In Smart Grids | IEEE Access, 10 (2022) |
2981  | 0.851 | Villarreal R.; Chamorro-Solano S.; Vega-Sampayo Y.; Espejo C.A.; Cantillo S.; Gaviria L.; Paez J.; Ochoa C.; Moreno S.; Polo C.; Pestana-Nobles R.; Montoya C. | A New Approach To Electrical Fault Detection In Urban Structures Using Dynamic Programming And Optimized Support Vector Machines | Sensors, 25, 7 (2025) |
19282  | 0.851 | Martinelli F.; Mercaldo F.; Santone A. | Detection Of Smart Grids Instability With Convolutional Neural Networks And Global Explainability | 2023 8th International Conference on Smart and Sustainable Technologies, SpliTech 2023 (2023) |