Smart City Gnosys

Smart city article details

Title Lstm And Resnet18 For Optimized Ambulance Routing And Traffic Signal Control In Emergency Situations
ID_Doc 35808
Authors Alruwaili M.; Ali A.; Almutairi M.; Alsahyan A.; Mohamed M.
Year 2025
Published Scientific Reports, 15, 1
DOI http://dx.doi.org/10.1038/s41598-025-89651-4
Abstract Traffic congestion, particularly in rapidly expanding urban centers, significantly impacts the timely delivery of emergency medical services (EMS), where every minute can mean the difference between life and death. Traditional traffic signal control systems often lack real-time adaptability to prioritize emergency vehicles, resulting in delays caused by congestion around ambulances. To address this critical issue, this paper presents an AI-driven real-time traffic management system designed to reduce EMS response times. The proposed solution incorporates three core components: Raspberry Pi-based traffic signal prioritization, deep learning-enabled audio-visual ambulance detection, and an advanced intelligent traffic management framework. For audio detection, raw data is transformed into spectrograms using Mel Frequency Cepstral Coefficients (MFCCs) and classified using a Long Short-Term Memory (LSTM) network. Visual data is processed through a ResNet18 convolutional neural network, pre-trained on ImageNet using inductive transfer learning. The outputs from the auditory and visual streams are integrated using empirical risk minimization, enabling accurate ambulance detection through multimodal data fusion. Performance evaluation demonstrates the effectiveness of the proposed system, achieving 98.3% accuracy in audio classification, 98.1% accuracy in visual classification, and 99% accuracy with the fused model. Additional metrics, including precision, recall, F1-score, and a confusion matrix, confirm the model’s reliability. This innovative system has the potential to transform urban traffic networks into intelligent, adaptive systems, reducing delays caused by traffic congestion, enhancing emergency medical care response times, and ultimately saving lives. The framework offers a scalable blueprint for future smart city traffic management solutions, meticulously designed to support urban growth and expansion. © The Author(s) 2025.
Author Keywords Hybrid intelligent systems; Hybrid learning; Image recognition; Machine learning and deep learning; Microcontrollers; Python; Real-time systems; Sound recognition


Similar Articles


Id Similarity Authors Title Published
50556 View0.879Shabbir A.; Cheema A.N.; Ullah I.; Almanjahie I.M.; Alshahrani F.Smart City Traffic Management: Acoustic-Based Vehicle Detection Using Stacking-Based Ensemble Deep Learning ApproachIEEE Access, 12 (2024)
6989 View0.865Kalai Selvi T.; Ajaykannan R.; Boomika M.; Jeevitha C.; Dinesh R.Ai-Based Dynamic Traffic Signal ControlProceedings of 5th International Conference on Pervasive Computing and Social Networking, ICPCSN 2025 (2025)
32347 View0.858Shatnawi M.; Younes M.B.Intelligent Detecting Of Emergency Vehicles On The Road Networks: Available Datasets Assessment2023 International Conference on Information Technology: Cybersecurity Challenges for Sustainable Cities, ICIT 2023 - Proceeding (2023)
17980 View0.857Bharaty K.S.; Konduri P.S.R.Deep Learning-Driven Smart Signal Systems For Advanced Image And Video Processing In Urban InfrastructureProceedings - 4th International Conference on Smart Technologies, Communication and Robotics 2025, STCR 2025 (2025)
6715 View0.853Priya K.; Priyadharshini K.; Krishnan R.S.; Raj J.R.F.; Settu I.J.; Srinivasan A.Advancing Urban Traffic Control With Iot And Deep Learning: A Yolov8 And Lstm-Based Adaptive Signal SystemProceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2025 (2025)
44467 View0.851Saranya V.S.; Subbarao G.; Balakotaiah D.; Bhavsingh M.; Babu K.S.; Dhanikonda S.R.Real-Time Traffic Flow Optimization Using Adaptive Iot And Data Analytics: A Novel Deepstreamnet Model4th International Conference on Sustainable Expert Systems, ICSES 2024 - Proceedings (2024)
22656 View0.85Rafalia N.; Moumen I.; Raji F.Z.; Abouchabaka J.Elevating Smart City Mobility Using Rae-Lstm Fusion For Next-Gen Traffic PredictionIndonesian Journal of Electrical Engineering and Computer Science, 35, 1 (2024)